Solve for t
t>-\frac{5}{6}
Share
Copied to clipboard
8t+16+3>2\left(t+4\right)+6
Use the distributive property to multiply 8 by t+2.
8t+19>2\left(t+4\right)+6
Add 16 and 3 to get 19.
8t+19>2t+8+6
Use the distributive property to multiply 2 by t+4.
8t+19>2t+14
Add 8 and 6 to get 14.
8t+19-2t>14
Subtract 2t from both sides.
6t+19>14
Combine 8t and -2t to get 6t.
6t>14-19
Subtract 19 from both sides.
6t>-5
Subtract 19 from 14 to get -5.
t>-\frac{5}{6}
Divide both sides by 6. Since 6 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}