Solve for q
q>\frac{249}{20}
Share
Copied to clipboard
q-10.95>\frac{12}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
q-10.95>\frac{3}{2}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
q>\frac{3}{2}+10.95
Add 10.95 to both sides.
q>\frac{3}{2}+\frac{219}{20}
Convert decimal number 10.95 to fraction \frac{1095}{100}. Reduce the fraction \frac{1095}{100} to lowest terms by extracting and canceling out 5.
q>\frac{30}{20}+\frac{219}{20}
Least common multiple of 2 and 20 is 20. Convert \frac{3}{2} and \frac{219}{20} to fractions with denominator 20.
q>\frac{30+219}{20}
Since \frac{30}{20} and \frac{219}{20} have the same denominator, add them by adding their numerators.
q>\frac{249}{20}
Add 30 and 219 to get 249.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}