Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

8\left(\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-a\right)^{3}.
8\left(a^{6}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
8\left(a^{6}-3a^{4}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8\left(a^{6}-3a^{5}+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
8\left(a^{6}-3a^{5}+3a^{4}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use the distributive property to multiply 8 by a^{6}-3a^{5}+3a^{4}-a^{3}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(\left(a^{2}\right)^{2}-2a^{2}a+a^{2}\right)-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-a\right)^{2}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{2}a+a^{2}\right)-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{3}+a^{2}\right)-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42a^{4}-84a^{3}+42a^{2}-36a^{2}+36a
Use the distributive property to multiply 42 by a^{4}-2a^{3}+a^{2}.
8a^{6}-24a^{5}+66a^{4}-8a^{3}-84a^{3}+42a^{2}-36a^{2}+36a
Combine 24a^{4} and 42a^{4} to get 66a^{4}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+42a^{2}-36a^{2}+36a
Combine -8a^{3} and -84a^{3} to get -92a^{3}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+6a^{2}+36a
Combine 42a^{2} and -36a^{2} to get 6a^{2}.
8\left(\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-a\right)^{3}.
8\left(a^{6}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
8\left(a^{6}-3a^{4}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8\left(a^{6}-3a^{5}+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
8\left(a^{6}-3a^{5}+3a^{4}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use the distributive property to multiply 8 by a^{6}-3a^{5}+3a^{4}-a^{3}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(\left(a^{2}\right)^{2}-2a^{2}a+a^{2}\right)-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-a\right)^{2}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{2}a+a^{2}\right)-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{3}+a^{2}\right)-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42a^{4}-84a^{3}+42a^{2}-36a^{2}+36a
Use the distributive property to multiply 42 by a^{4}-2a^{3}+a^{2}.
8a^{6}-24a^{5}+66a^{4}-8a^{3}-84a^{3}+42a^{2}-36a^{2}+36a
Combine 24a^{4} and 42a^{4} to get 66a^{4}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+42a^{2}-36a^{2}+36a
Combine -8a^{3} and -84a^{3} to get -92a^{3}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+6a^{2}+36a
Combine 42a^{2} and -36a^{2} to get 6a^{2}.