Evaluate
2a\left(a-1\right)\left(2a-3\right)\left(2a+1\right)\left(a^{2}-a+6\right)
Expand
8a^{6}-24a^{5}+66a^{4}-92a^{3}+6a^{2}+36a
Share
Copied to clipboard
8\left(\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-a\right)^{3}.
8\left(a^{6}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
8\left(a^{6}-3a^{4}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8\left(a^{6}-3a^{5}+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
8\left(a^{6}-3a^{5}+3a^{4}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use the distributive property to multiply 8 by a^{6}-3a^{5}+3a^{4}-a^{3}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(\left(a^{2}\right)^{2}-2a^{2}a+a^{2}\right)-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-a\right)^{2}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{2}a+a^{2}\right)-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{3}+a^{2}\right)-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42a^{4}-84a^{3}+42a^{2}-36a^{2}+36a
Use the distributive property to multiply 42 by a^{4}-2a^{3}+a^{2}.
8a^{6}-24a^{5}+66a^{4}-8a^{3}-84a^{3}+42a^{2}-36a^{2}+36a
Combine 24a^{4} and 42a^{4} to get 66a^{4}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+42a^{2}-36a^{2}+36a
Combine -8a^{3} and -84a^{3} to get -92a^{3}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+6a^{2}+36a
Combine 42a^{2} and -36a^{2} to get 6a^{2}.
8\left(\left(a^{2}\right)^{3}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3} to expand \left(a^{2}-a\right)^{3}.
8\left(a^{6}-3\left(a^{2}\right)^{2}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
8\left(a^{6}-3a^{4}a+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8\left(a^{6}-3a^{5}+3a^{2}a^{2}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 4 and 1 to get 5.
8\left(a^{6}-3a^{5}+3a^{4}-a^{3}\right)+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{2}-a\right)^{2}-36a^{2}+36a
Use the distributive property to multiply 8 by a^{6}-3a^{5}+3a^{4}-a^{3}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(\left(a^{2}\right)^{2}-2a^{2}a+a^{2}\right)-36a^{2}+36a
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a^{2}-a\right)^{2}.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{2}a+a^{2}\right)-36a^{2}+36a
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42\left(a^{4}-2a^{3}+a^{2}\right)-36a^{2}+36a
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
8a^{6}-24a^{5}+24a^{4}-8a^{3}+42a^{4}-84a^{3}+42a^{2}-36a^{2}+36a
Use the distributive property to multiply 42 by a^{4}-2a^{3}+a^{2}.
8a^{6}-24a^{5}+66a^{4}-8a^{3}-84a^{3}+42a^{2}-36a^{2}+36a
Combine 24a^{4} and 42a^{4} to get 66a^{4}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+42a^{2}-36a^{2}+36a
Combine -8a^{3} and -84a^{3} to get -92a^{3}.
8a^{6}-24a^{5}+66a^{4}-92a^{3}+6a^{2}+36a
Combine 42a^{2} and -36a^{2} to get 6a^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}