Skip to main content
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\times 10\left(9^{2}+1\right)\left(9^{4}+1\right)\left(9^{8}+1\right)=9^{x}-1
Add 9 and 1 to get 10.
80\left(9^{2}+1\right)\left(9^{4}+1\right)\left(9^{8}+1\right)=9^{x}-1
Multiply 8 and 10 to get 80.
80\left(81+1\right)\left(9^{4}+1\right)\left(9^{8}+1\right)=9^{x}-1
Calculate 9 to the power of 2 and get 81.
80\times 82\left(9^{4}+1\right)\left(9^{8}+1\right)=9^{x}-1
Add 81 and 1 to get 82.
6560\left(9^{4}+1\right)\left(9^{8}+1\right)=9^{x}-1
Multiply 80 and 82 to get 6560.
6560\left(6561+1\right)\left(9^{8}+1\right)=9^{x}-1
Calculate 9 to the power of 4 and get 6561.
6560\times 6562\left(9^{8}+1\right)=9^{x}-1
Add 6561 and 1 to get 6562.
43046720\left(9^{8}+1\right)=9^{x}-1
Multiply 6560 and 6562 to get 43046720.
43046720\left(43046721+1\right)=9^{x}-1
Calculate 9 to the power of 8 and get 43046721.
43046720\times 43046722=9^{x}-1
Add 43046721 and 1 to get 43046722.
1853020188851840=9^{x}-1
Multiply 43046720 and 43046722 to get 1853020188851840.
9^{x}-1=1853020188851840
Swap sides so that all variable terms are on the left hand side.
9^{x}=1853020188851841
Add 1 to both sides of the equation.
\log(9^{x})=\log(1853020188851841)
Take the logarithm of both sides of the equation.
x\log(9)=\log(1853020188851841)
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(1853020188851841)}{\log(9)}
Divide both sides by \log(9).
x=\log_{9}\left(1853020188851841\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).