Solve for x
x\leq \frac{5}{2}
Graph
Share
Copied to clipboard
40x-32-6\left(3x+5\right)\leq -7
Use the distributive property to multiply 8 by 5x-4.
40x-32-18x-30\leq -7
Use the distributive property to multiply -6 by 3x+5.
22x-32-30\leq -7
Combine 40x and -18x to get 22x.
22x-62\leq -7
Subtract 30 from -32 to get -62.
22x\leq -7+62
Add 62 to both sides.
22x\leq 55
Add -7 and 62 to get 55.
x\leq \frac{55}{22}
Divide both sides by 22. Since 22 is positive, the inequality direction remains the same.
x\leq \frac{5}{2}
Reduce the fraction \frac{55}{22} to lowest terms by extracting and canceling out 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}