Solve for x
x=6\left(\lambda -4\right)
Solve for λ
\lambda =\frac{x+24}{6}
Graph
Share
Copied to clipboard
24\lambda -48=2\left(2x+24\right)
Use the distributive property to multiply 8 by 3\lambda -6.
24\lambda -48=4x+48
Use the distributive property to multiply 2 by 2x+24.
4x+48=24\lambda -48
Swap sides so that all variable terms are on the left hand side.
4x=24\lambda -48-48
Subtract 48 from both sides.
4x=24\lambda -96
Subtract 48 from -48 to get -96.
\frac{4x}{4}=\frac{24\lambda -96}{4}
Divide both sides by 4.
x=\frac{24\lambda -96}{4}
Dividing by 4 undoes the multiplication by 4.
x=6\lambda -24
Divide -96+24\lambda by 4.
24\lambda -48=2\left(2x+24\right)
Use the distributive property to multiply 8 by 3\lambda -6.
24\lambda -48=4x+48
Use the distributive property to multiply 2 by 2x+24.
24\lambda =4x+48+48
Add 48 to both sides.
24\lambda =4x+96
Add 48 and 48 to get 96.
\frac{24\lambda }{24}=\frac{4x+96}{24}
Divide both sides by 24.
\lambda =\frac{4x+96}{24}
Dividing by 24 undoes the multiplication by 24.
\lambda =\frac{x}{6}+4
Divide 96+4x by 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}