Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(12x-10\right)\times 99x-5\left(19x^{2}-1\right)=99x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 99x.
792\left(12x-10\right)x-5\left(19x^{2}-1\right)=99x
Multiply 8 and 99 to get 792.
\left(9504x-7920\right)x-5\left(19x^{2}-1\right)=99x
Use the distributive property to multiply 792 by 12x-10.
9504x^{2}-7920x-5\left(19x^{2}-1\right)=99x
Use the distributive property to multiply 9504x-7920 by x.
9504x^{2}-7920x-95x^{2}+5=99x
Use the distributive property to multiply -5 by 19x^{2}-1.
9409x^{2}-7920x+5=99x
Combine 9504x^{2} and -95x^{2} to get 9409x^{2}.
9409x^{2}-7920x+5-99x=0
Subtract 99x from both sides.
9409x^{2}-8019x+5=0
Combine -7920x and -99x to get -8019x.
x=\frac{-\left(-8019\right)±\sqrt{\left(-8019\right)^{2}-4\times 9409\times 5}}{2\times 9409}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9409 for a, -8019 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8019\right)±\sqrt{64304361-4\times 9409\times 5}}{2\times 9409}
Square -8019.
x=\frac{-\left(-8019\right)±\sqrt{64304361-37636\times 5}}{2\times 9409}
Multiply -4 times 9409.
x=\frac{-\left(-8019\right)±\sqrt{64304361-188180}}{2\times 9409}
Multiply -37636 times 5.
x=\frac{-\left(-8019\right)±\sqrt{64116181}}{2\times 9409}
Add 64304361 to -188180.
x=\frac{8019±\sqrt{64116181}}{2\times 9409}
The opposite of -8019 is 8019.
x=\frac{8019±\sqrt{64116181}}{18818}
Multiply 2 times 9409.
x=\frac{\sqrt{64116181}+8019}{18818}
Now solve the equation x=\frac{8019±\sqrt{64116181}}{18818} when ± is plus. Add 8019 to \sqrt{64116181}.
x=\frac{8019-\sqrt{64116181}}{18818}
Now solve the equation x=\frac{8019±\sqrt{64116181}}{18818} when ± is minus. Subtract \sqrt{64116181} from 8019.
x=\frac{\sqrt{64116181}+8019}{18818} x=\frac{8019-\sqrt{64116181}}{18818}
The equation is now solved.
8\left(12x-10\right)\times 99x-5\left(19x^{2}-1\right)=99x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 99x.
792\left(12x-10\right)x-5\left(19x^{2}-1\right)=99x
Multiply 8 and 99 to get 792.
\left(9504x-7920\right)x-5\left(19x^{2}-1\right)=99x
Use the distributive property to multiply 792 by 12x-10.
9504x^{2}-7920x-5\left(19x^{2}-1\right)=99x
Use the distributive property to multiply 9504x-7920 by x.
9504x^{2}-7920x-95x^{2}+5=99x
Use the distributive property to multiply -5 by 19x^{2}-1.
9409x^{2}-7920x+5=99x
Combine 9504x^{2} and -95x^{2} to get 9409x^{2}.
9409x^{2}-7920x+5-99x=0
Subtract 99x from both sides.
9409x^{2}-8019x+5=0
Combine -7920x and -99x to get -8019x.
9409x^{2}-8019x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
\frac{9409x^{2}-8019x}{9409}=-\frac{5}{9409}
Divide both sides by 9409.
x^{2}-\frac{8019}{9409}x=-\frac{5}{9409}
Dividing by 9409 undoes the multiplication by 9409.
x^{2}-\frac{8019}{9409}x+\left(-\frac{8019}{18818}\right)^{2}=-\frac{5}{9409}+\left(-\frac{8019}{18818}\right)^{2}
Divide -\frac{8019}{9409}, the coefficient of the x term, by 2 to get -\frac{8019}{18818}. Then add the square of -\frac{8019}{18818} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8019}{9409}x+\frac{64304361}{354117124}=-\frac{5}{9409}+\frac{64304361}{354117124}
Square -\frac{8019}{18818} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{8019}{9409}x+\frac{64304361}{354117124}=\frac{64116181}{354117124}
Add -\frac{5}{9409} to \frac{64304361}{354117124} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{8019}{18818}\right)^{2}=\frac{64116181}{354117124}
Factor x^{2}-\frac{8019}{9409}x+\frac{64304361}{354117124}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{8019}{18818}\right)^{2}}=\sqrt{\frac{64116181}{354117124}}
Take the square root of both sides of the equation.
x-\frac{8019}{18818}=\frac{\sqrt{64116181}}{18818} x-\frac{8019}{18818}=-\frac{\sqrt{64116181}}{18818}
Simplify.
x=\frac{\sqrt{64116181}+8019}{18818} x=\frac{8019-\sqrt{64116181}}{18818}
Add \frac{8019}{18818} to both sides of the equation.