Solve for y
y=\frac{i\sqrt{57}}{6}+1\approx 1+1.258305739i
y=-\frac{i\sqrt{57}}{6}+1\approx 1-1.258305739i
Share
Copied to clipboard
24\left(-0.5y+1\right)y=31
Multiply 8 and 3 to get 24.
\left(-12y+24\right)y=31
Use the distributive property to multiply 24 by -0.5y+1.
-12y^{2}+24y=31
Use the distributive property to multiply -12y+24 by y.
-12y^{2}+24y-31=0
Subtract 31 from both sides.
y=\frac{-24±\sqrt{24^{2}-4\left(-12\right)\left(-31\right)}}{2\left(-12\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -12 for a, 24 for b, and -31 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\left(-12\right)\left(-31\right)}}{2\left(-12\right)}
Square 24.
y=\frac{-24±\sqrt{576+48\left(-31\right)}}{2\left(-12\right)}
Multiply -4 times -12.
y=\frac{-24±\sqrt{576-1488}}{2\left(-12\right)}
Multiply 48 times -31.
y=\frac{-24±\sqrt{-912}}{2\left(-12\right)}
Add 576 to -1488.
y=\frac{-24±4\sqrt{57}i}{2\left(-12\right)}
Take the square root of -912.
y=\frac{-24±4\sqrt{57}i}{-24}
Multiply 2 times -12.
y=\frac{-24+4\sqrt{57}i}{-24}
Now solve the equation y=\frac{-24±4\sqrt{57}i}{-24} when ± is plus. Add -24 to 4i\sqrt{57}.
y=-\frac{\sqrt{57}i}{6}+1
Divide -24+4i\sqrt{57} by -24.
y=\frac{-4\sqrt{57}i-24}{-24}
Now solve the equation y=\frac{-24±4\sqrt{57}i}{-24} when ± is minus. Subtract 4i\sqrt{57} from -24.
y=\frac{\sqrt{57}i}{6}+1
Divide -24-4i\sqrt{57} by -24.
y=-\frac{\sqrt{57}i}{6}+1 y=\frac{\sqrt{57}i}{6}+1
The equation is now solved.
24\left(-0.5y+1\right)y=31
Multiply 8 and 3 to get 24.
\left(-12y+24\right)y=31
Use the distributive property to multiply 24 by -0.5y+1.
-12y^{2}+24y=31
Use the distributive property to multiply -12y+24 by y.
\frac{-12y^{2}+24y}{-12}=\frac{31}{-12}
Divide both sides by -12.
y^{2}+\frac{24}{-12}y=\frac{31}{-12}
Dividing by -12 undoes the multiplication by -12.
y^{2}-2y=\frac{31}{-12}
Divide 24 by -12.
y^{2}-2y=-\frac{31}{12}
Divide 31 by -12.
y^{2}-2y+1=-\frac{31}{12}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-2y+1=-\frac{19}{12}
Add -\frac{31}{12} to 1.
\left(y-1\right)^{2}=-\frac{19}{12}
Factor y^{2}-2y+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-1\right)^{2}}=\sqrt{-\frac{19}{12}}
Take the square root of both sides of the equation.
y-1=\frac{\sqrt{57}i}{6} y-1=-\frac{\sqrt{57}i}{6}
Simplify.
y=\frac{\sqrt{57}i}{6}+1 y=-\frac{\sqrt{57}i}{6}+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}