Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

8y^{2}+4y-1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-4±\sqrt{4^{2}-4\times 8\left(-1\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, 4 for b, and -1 for c in the quadratic formula.
y=\frac{-4±4\sqrt{3}}{16}
Do the calculations.
y=\frac{\sqrt{3}-1}{4} y=\frac{-\sqrt{3}-1}{4}
Solve the equation y=\frac{-4±4\sqrt{3}}{16} when ± is plus and when ± is minus.
8\left(y-\frac{\sqrt{3}-1}{4}\right)\left(y-\frac{-\sqrt{3}-1}{4}\right)>0
Rewrite the inequality by using the obtained solutions.
y-\frac{\sqrt{3}-1}{4}<0 y-\frac{-\sqrt{3}-1}{4}<0
For the product to be positive, y-\frac{\sqrt{3}-1}{4} and y-\frac{-\sqrt{3}-1}{4} have to be both negative or both positive. Consider the case when y-\frac{\sqrt{3}-1}{4} and y-\frac{-\sqrt{3}-1}{4} are both negative.
y<\frac{-\sqrt{3}-1}{4}
The solution satisfying both inequalities is y<\frac{-\sqrt{3}-1}{4}.
y-\frac{-\sqrt{3}-1}{4}>0 y-\frac{\sqrt{3}-1}{4}>0
Consider the case when y-\frac{\sqrt{3}-1}{4} and y-\frac{-\sqrt{3}-1}{4} are both positive.
y>\frac{\sqrt{3}-1}{4}
The solution satisfying both inequalities is y>\frac{\sqrt{3}-1}{4}.
y<\frac{-\sqrt{3}-1}{4}\text{; }y>\frac{\sqrt{3}-1}{4}
The final solution is the union of the obtained solutions.