Factor
\left(2y+5\right)\left(4y+1\right)
Evaluate
\left(2y+5\right)\left(4y+1\right)
Graph
Share
Copied to clipboard
a+b=22 ab=8\times 5=40
Factor the expression by grouping. First, the expression needs to be rewritten as 8y^{2}+ay+by+5. To find a and b, set up a system to be solved.
1,40 2,20 4,10 5,8
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 40.
1+40=41 2+20=22 4+10=14 5+8=13
Calculate the sum for each pair.
a=2 b=20
The solution is the pair that gives sum 22.
\left(8y^{2}+2y\right)+\left(20y+5\right)
Rewrite 8y^{2}+22y+5 as \left(8y^{2}+2y\right)+\left(20y+5\right).
2y\left(4y+1\right)+5\left(4y+1\right)
Factor out 2y in the first and 5 in the second group.
\left(4y+1\right)\left(2y+5\right)
Factor out common term 4y+1 by using distributive property.
8y^{2}+22y+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-22±\sqrt{22^{2}-4\times 8\times 5}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-22±\sqrt{484-4\times 8\times 5}}{2\times 8}
Square 22.
y=\frac{-22±\sqrt{484-32\times 5}}{2\times 8}
Multiply -4 times 8.
y=\frac{-22±\sqrt{484-160}}{2\times 8}
Multiply -32 times 5.
y=\frac{-22±\sqrt{324}}{2\times 8}
Add 484 to -160.
y=\frac{-22±18}{2\times 8}
Take the square root of 324.
y=\frac{-22±18}{16}
Multiply 2 times 8.
y=-\frac{4}{16}
Now solve the equation y=\frac{-22±18}{16} when ± is plus. Add -22 to 18.
y=-\frac{1}{4}
Reduce the fraction \frac{-4}{16} to lowest terms by extracting and canceling out 4.
y=-\frac{40}{16}
Now solve the equation y=\frac{-22±18}{16} when ± is minus. Subtract 18 from -22.
y=-\frac{5}{2}
Reduce the fraction \frac{-40}{16} to lowest terms by extracting and canceling out 8.
8y^{2}+22y+5=8\left(y-\left(-\frac{1}{4}\right)\right)\left(y-\left(-\frac{5}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{1}{4} for x_{1} and -\frac{5}{2} for x_{2}.
8y^{2}+22y+5=8\left(y+\frac{1}{4}\right)\left(y+\frac{5}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8y^{2}+22y+5=8\times \frac{4y+1}{4}\left(y+\frac{5}{2}\right)
Add \frac{1}{4} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8y^{2}+22y+5=8\times \frac{4y+1}{4}\times \frac{2y+5}{2}
Add \frac{5}{2} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8y^{2}+22y+5=8\times \frac{\left(4y+1\right)\left(2y+5\right)}{4\times 2}
Multiply \frac{4y+1}{4} times \frac{2y+5}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
8y^{2}+22y+5=8\times \frac{\left(4y+1\right)\left(2y+5\right)}{8}
Multiply 4 times 2.
8y^{2}+22y+5=\left(4y+1\right)\left(2y+5\right)
Cancel out 8, the greatest common factor in 8 and 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}