Solve for x
x = \frac{\sqrt{281} + 5}{16} \approx 1.360190913
x=\frac{5-\sqrt{281}}{16}\approx -0.735190913
Graph
Share
Copied to clipboard
8x^{2}-5x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 8\left(-8\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -5 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 8\left(-8\right)}}{2\times 8}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-32\left(-8\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-5\right)±\sqrt{25+256}}{2\times 8}
Multiply -32 times -8.
x=\frac{-\left(-5\right)±\sqrt{281}}{2\times 8}
Add 25 to 256.
x=\frac{5±\sqrt{281}}{2\times 8}
The opposite of -5 is 5.
x=\frac{5±\sqrt{281}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{281}+5}{16}
Now solve the equation x=\frac{5±\sqrt{281}}{16} when ± is plus. Add 5 to \sqrt{281}.
x=\frac{5-\sqrt{281}}{16}
Now solve the equation x=\frac{5±\sqrt{281}}{16} when ± is minus. Subtract \sqrt{281} from 5.
x=\frac{\sqrt{281}+5}{16} x=\frac{5-\sqrt{281}}{16}
The equation is now solved.
8x^{2}-5x-8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-5x-8-\left(-8\right)=-\left(-8\right)
Add 8 to both sides of the equation.
8x^{2}-5x=-\left(-8\right)
Subtracting -8 from itself leaves 0.
8x^{2}-5x=8
Subtract -8 from 0.
\frac{8x^{2}-5x}{8}=\frac{8}{8}
Divide both sides by 8.
x^{2}-\frac{5}{8}x=\frac{8}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{5}{8}x=1
Divide 8 by 8.
x^{2}-\frac{5}{8}x+\left(-\frac{5}{16}\right)^{2}=1+\left(-\frac{5}{16}\right)^{2}
Divide -\frac{5}{8}, the coefficient of the x term, by 2 to get -\frac{5}{16}. Then add the square of -\frac{5}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{8}x+\frac{25}{256}=1+\frac{25}{256}
Square -\frac{5}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{8}x+\frac{25}{256}=\frac{281}{256}
Add 1 to \frac{25}{256}.
\left(x-\frac{5}{16}\right)^{2}=\frac{281}{256}
Factor x^{2}-\frac{5}{8}x+\frac{25}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{16}\right)^{2}}=\sqrt{\frac{281}{256}}
Take the square root of both sides of the equation.
x-\frac{5}{16}=\frac{\sqrt{281}}{16} x-\frac{5}{16}=-\frac{\sqrt{281}}{16}
Simplify.
x=\frac{\sqrt{281}+5}{16} x=\frac{5-\sqrt{281}}{16}
Add \frac{5}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}