Factor
\left(x-2\right)\left(8x+11\right)
Evaluate
\left(x-2\right)\left(8x+11\right)
Graph
Share
Copied to clipboard
a+b=-5 ab=8\left(-22\right)=-176
Factor the expression by grouping. First, the expression needs to be rewritten as 8x^{2}+ax+bx-22. To find a and b, set up a system to be solved.
1,-176 2,-88 4,-44 8,-22 11,-16
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -176.
1-176=-175 2-88=-86 4-44=-40 8-22=-14 11-16=-5
Calculate the sum for each pair.
a=-16 b=11
The solution is the pair that gives sum -5.
\left(8x^{2}-16x\right)+\left(11x-22\right)
Rewrite 8x^{2}-5x-22 as \left(8x^{2}-16x\right)+\left(11x-22\right).
8x\left(x-2\right)+11\left(x-2\right)
Factor out 8x in the first and 11 in the second group.
\left(x-2\right)\left(8x+11\right)
Factor out common term x-2 by using distributive property.
8x^{2}-5x-22=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 8\left(-22\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 8\left(-22\right)}}{2\times 8}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-32\left(-22\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-5\right)±\sqrt{25+704}}{2\times 8}
Multiply -32 times -22.
x=\frac{-\left(-5\right)±\sqrt{729}}{2\times 8}
Add 25 to 704.
x=\frac{-\left(-5\right)±27}{2\times 8}
Take the square root of 729.
x=\frac{5±27}{2\times 8}
The opposite of -5 is 5.
x=\frac{5±27}{16}
Multiply 2 times 8.
x=\frac{32}{16}
Now solve the equation x=\frac{5±27}{16} when ± is plus. Add 5 to 27.
x=2
Divide 32 by 16.
x=-\frac{22}{16}
Now solve the equation x=\frac{5±27}{16} when ± is minus. Subtract 27 from 5.
x=-\frac{11}{8}
Reduce the fraction \frac{-22}{16} to lowest terms by extracting and canceling out 2.
8x^{2}-5x-22=8\left(x-2\right)\left(x-\left(-\frac{11}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and -\frac{11}{8} for x_{2}.
8x^{2}-5x-22=8\left(x-2\right)\left(x+\frac{11}{8}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8x^{2}-5x-22=8\left(x-2\right)\times \frac{8x+11}{8}
Add \frac{11}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-5x-22=\left(x-2\right)\left(8x+11\right)
Cancel out 8, the greatest common factor in 8 and 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}