Solve for x
x = -\frac{5}{4} = -1\frac{1}{4} = -1.25
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
a+b=-2 ab=8\left(-15\right)=-120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-120 2,-60 3,-40 4,-30 5,-24 6,-20 8,-15 10,-12
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -120.
1-120=-119 2-60=-58 3-40=-37 4-30=-26 5-24=-19 6-20=-14 8-15=-7 10-12=-2
Calculate the sum for each pair.
a=-12 b=10
The solution is the pair that gives sum -2.
\left(8x^{2}-12x\right)+\left(10x-15\right)
Rewrite 8x^{2}-2x-15 as \left(8x^{2}-12x\right)+\left(10x-15\right).
4x\left(2x-3\right)+5\left(2x-3\right)
Factor out 4x in the first and 5 in the second group.
\left(2x-3\right)\left(4x+5\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=-\frac{5}{4}
To find equation solutions, solve 2x-3=0 and 4x+5=0.
8x^{2}-2x-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 8\left(-15\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -2 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 8\left(-15\right)}}{2\times 8}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-32\left(-15\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-2\right)±\sqrt{4+480}}{2\times 8}
Multiply -32 times -15.
x=\frac{-\left(-2\right)±\sqrt{484}}{2\times 8}
Add 4 to 480.
x=\frac{-\left(-2\right)±22}{2\times 8}
Take the square root of 484.
x=\frac{2±22}{2\times 8}
The opposite of -2 is 2.
x=\frac{2±22}{16}
Multiply 2 times 8.
x=\frac{24}{16}
Now solve the equation x=\frac{2±22}{16} when ± is plus. Add 2 to 22.
x=\frac{3}{2}
Reduce the fraction \frac{24}{16} to lowest terms by extracting and canceling out 8.
x=-\frac{20}{16}
Now solve the equation x=\frac{2±22}{16} when ± is minus. Subtract 22 from 2.
x=-\frac{5}{4}
Reduce the fraction \frac{-20}{16} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=-\frac{5}{4}
The equation is now solved.
8x^{2}-2x-15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-2x-15-\left(-15\right)=-\left(-15\right)
Add 15 to both sides of the equation.
8x^{2}-2x=-\left(-15\right)
Subtracting -15 from itself leaves 0.
8x^{2}-2x=15
Subtract -15 from 0.
\frac{8x^{2}-2x}{8}=\frac{15}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{2}{8}\right)x=\frac{15}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{1}{4}x=\frac{15}{8}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{4}x+\left(-\frac{1}{8}\right)^{2}=\frac{15}{8}+\left(-\frac{1}{8}\right)^{2}
Divide -\frac{1}{4}, the coefficient of the x term, by 2 to get -\frac{1}{8}. Then add the square of -\frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{15}{8}+\frac{1}{64}
Square -\frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{4}x+\frac{1}{64}=\frac{121}{64}
Add \frac{15}{8} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{8}\right)^{2}=\frac{121}{64}
Factor x^{2}-\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{8}\right)^{2}}=\sqrt{\frac{121}{64}}
Take the square root of both sides of the equation.
x-\frac{1}{8}=\frac{11}{8} x-\frac{1}{8}=-\frac{11}{8}
Simplify.
x=\frac{3}{2} x=-\frac{5}{4}
Add \frac{1}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}