Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-26 ab=8\times 15=120
Factor the expression by grouping. First, the expression needs to be rewritten as 8x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Calculate the sum for each pair.
a=-20 b=-6
The solution is the pair that gives sum -26.
\left(8x^{2}-20x\right)+\left(-6x+15\right)
Rewrite 8x^{2}-26x+15 as \left(8x^{2}-20x\right)+\left(-6x+15\right).
4x\left(2x-5\right)-3\left(2x-5\right)
Factor out 4x in the first and -3 in the second group.
\left(2x-5\right)\left(4x-3\right)
Factor out common term 2x-5 by using distributive property.
8x^{2}-26x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\times 8\times 15}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{676-4\times 8\times 15}}{2\times 8}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676-32\times 15}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-26\right)±\sqrt{676-480}}{2\times 8}
Multiply -32 times 15.
x=\frac{-\left(-26\right)±\sqrt{196}}{2\times 8}
Add 676 to -480.
x=\frac{-\left(-26\right)±14}{2\times 8}
Take the square root of 196.
x=\frac{26±14}{2\times 8}
The opposite of -26 is 26.
x=\frac{26±14}{16}
Multiply 2 times 8.
x=\frac{40}{16}
Now solve the equation x=\frac{26±14}{16} when ± is plus. Add 26 to 14.
x=\frac{5}{2}
Reduce the fraction \frac{40}{16} to lowest terms by extracting and canceling out 8.
x=\frac{12}{16}
Now solve the equation x=\frac{26±14}{16} when ± is minus. Subtract 14 from 26.
x=\frac{3}{4}
Reduce the fraction \frac{12}{16} to lowest terms by extracting and canceling out 4.
8x^{2}-26x+15=8\left(x-\frac{5}{2}\right)\left(x-\frac{3}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and \frac{3}{4} for x_{2}.
8x^{2}-26x+15=8\times \frac{2x-5}{2}\left(x-\frac{3}{4}\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-26x+15=8\times \frac{2x-5}{2}\times \frac{4x-3}{4}
Subtract \frac{3}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-26x+15=8\times \frac{\left(2x-5\right)\left(4x-3\right)}{2\times 4}
Multiply \frac{2x-5}{2} times \frac{4x-3}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
8x^{2}-26x+15=8\times \frac{\left(2x-5\right)\left(4x-3\right)}{8}
Multiply 2 times 4.
8x^{2}-26x+15=\left(2x-5\right)\left(4x-3\right)
Cancel out 8, the greatest common factor in 8 and 8.