Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-24x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 8\left(-24\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -24 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 8\left(-24\right)}}{2\times 8}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-32\left(-24\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-24\right)±\sqrt{576+768}}{2\times 8}
Multiply -32 times -24.
x=\frac{-\left(-24\right)±\sqrt{1344}}{2\times 8}
Add 576 to 768.
x=\frac{-\left(-24\right)±8\sqrt{21}}{2\times 8}
Take the square root of 1344.
x=\frac{24±8\sqrt{21}}{2\times 8}
The opposite of -24 is 24.
x=\frac{24±8\sqrt{21}}{16}
Multiply 2 times 8.
x=\frac{8\sqrt{21}+24}{16}
Now solve the equation x=\frac{24±8\sqrt{21}}{16} when ± is plus. Add 24 to 8\sqrt{21}.
x=\frac{\sqrt{21}+3}{2}
Divide 24+8\sqrt{21} by 16.
x=\frac{24-8\sqrt{21}}{16}
Now solve the equation x=\frac{24±8\sqrt{21}}{16} when ± is minus. Subtract 8\sqrt{21} from 24.
x=\frac{3-\sqrt{21}}{2}
Divide 24-8\sqrt{21} by 16.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
The equation is now solved.
8x^{2}-24x-24=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-24x-24-\left(-24\right)=-\left(-24\right)
Add 24 to both sides of the equation.
8x^{2}-24x=-\left(-24\right)
Subtracting -24 from itself leaves 0.
8x^{2}-24x=24
Subtract -24 from 0.
\frac{8x^{2}-24x}{8}=\frac{24}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{24}{8}\right)x=\frac{24}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-3x=\frac{24}{8}
Divide -24 by 8.
x^{2}-3x=3
Divide 24 by 8.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=3+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=3+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{21}{4}
Add 3 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{21}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{\sqrt{21}}{2} x-\frac{3}{2}=-\frac{\sqrt{21}}{2}
Simplify.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
Add \frac{3}{2} to both sides of the equation.