Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-22x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 8\left(-15\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 8\left(-15\right)}}{2\times 8}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-32\left(-15\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-22\right)±\sqrt{484+480}}{2\times 8}
Multiply -32 times -15.
x=\frac{-\left(-22\right)±\sqrt{964}}{2\times 8}
Add 484 to 480.
x=\frac{-\left(-22\right)±2\sqrt{241}}{2\times 8}
Take the square root of 964.
x=\frac{22±2\sqrt{241}}{2\times 8}
The opposite of -22 is 22.
x=\frac{22±2\sqrt{241}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{241}+22}{16}
Now solve the equation x=\frac{22±2\sqrt{241}}{16} when ± is plus. Add 22 to 2\sqrt{241}.
x=\frac{\sqrt{241}+11}{8}
Divide 22+2\sqrt{241} by 16.
x=\frac{22-2\sqrt{241}}{16}
Now solve the equation x=\frac{22±2\sqrt{241}}{16} when ± is minus. Subtract 2\sqrt{241} from 22.
x=\frac{11-\sqrt{241}}{8}
Divide 22-2\sqrt{241} by 16.
8x^{2}-22x-15=8\left(x-\frac{\sqrt{241}+11}{8}\right)\left(x-\frac{11-\sqrt{241}}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11+\sqrt{241}}{8} for x_{1} and \frac{11-\sqrt{241}}{8} for x_{2}.