Factor
4\left(2x-7\right)\left(x+1\right)
Evaluate
4\left(2x-7\right)\left(x+1\right)
Graph
Share
Copied to clipboard
4\left(2x^{2}-5x-7\right)
Factor out 4.
a+b=-5 ab=2\left(-7\right)=-14
Consider 2x^{2}-5x-7. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
1,-14 2,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -14.
1-14=-13 2-7=-5
Calculate the sum for each pair.
a=-7 b=2
The solution is the pair that gives sum -5.
\left(2x^{2}-7x\right)+\left(2x-7\right)
Rewrite 2x^{2}-5x-7 as \left(2x^{2}-7x\right)+\left(2x-7\right).
x\left(2x-7\right)+2x-7
Factor out x in 2x^{2}-7x.
\left(2x-7\right)\left(x+1\right)
Factor out common term 2x-7 by using distributive property.
4\left(2x-7\right)\left(x+1\right)
Rewrite the complete factored expression.
8x^{2}-20x-28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 8\left(-28\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 8\left(-28\right)}}{2\times 8}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-32\left(-28\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-20\right)±\sqrt{400+896}}{2\times 8}
Multiply -32 times -28.
x=\frac{-\left(-20\right)±\sqrt{1296}}{2\times 8}
Add 400 to 896.
x=\frac{-\left(-20\right)±36}{2\times 8}
Take the square root of 1296.
x=\frac{20±36}{2\times 8}
The opposite of -20 is 20.
x=\frac{20±36}{16}
Multiply 2 times 8.
x=\frac{56}{16}
Now solve the equation x=\frac{20±36}{16} when ± is plus. Add 20 to 36.
x=\frac{7}{2}
Reduce the fraction \frac{56}{16} to lowest terms by extracting and canceling out 8.
x=-\frac{16}{16}
Now solve the equation x=\frac{20±36}{16} when ± is minus. Subtract 36 from 20.
x=-1
Divide -16 by 16.
8x^{2}-20x-28=8\left(x-\frac{7}{2}\right)\left(x-\left(-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{2} for x_{1} and -1 for x_{2}.
8x^{2}-20x-28=8\left(x-\frac{7}{2}\right)\left(x+1\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8x^{2}-20x-28=8\times \frac{2x-7}{2}\left(x+1\right)
Subtract \frac{7}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-20x-28=4\left(2x-7\right)\left(x+1\right)
Cancel out 2, the greatest common factor in 8 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}