Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(2x^{2}-5x-3\right)
Factor out 4.
a+b=-5 ab=2\left(-3\right)=-6
Consider 2x^{2}-5x-3. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
1,-6 2,-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -6.
1-6=-5 2-3=-1
Calculate the sum for each pair.
a=-6 b=1
The solution is the pair that gives sum -5.
\left(2x^{2}-6x\right)+\left(x-3\right)
Rewrite 2x^{2}-5x-3 as \left(2x^{2}-6x\right)+\left(x-3\right).
2x\left(x-3\right)+x-3
Factor out 2x in 2x^{2}-6x.
\left(x-3\right)\left(2x+1\right)
Factor out common term x-3 by using distributive property.
4\left(x-3\right)\left(2x+1\right)
Rewrite the complete factored expression.
8x^{2}-20x-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 8\left(-12\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 8\left(-12\right)}}{2\times 8}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-32\left(-12\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-20\right)±\sqrt{400+384}}{2\times 8}
Multiply -32 times -12.
x=\frac{-\left(-20\right)±\sqrt{784}}{2\times 8}
Add 400 to 384.
x=\frac{-\left(-20\right)±28}{2\times 8}
Take the square root of 784.
x=\frac{20±28}{2\times 8}
The opposite of -20 is 20.
x=\frac{20±28}{16}
Multiply 2 times 8.
x=\frac{48}{16}
Now solve the equation x=\frac{20±28}{16} when ± is plus. Add 20 to 28.
x=3
Divide 48 by 16.
x=-\frac{8}{16}
Now solve the equation x=\frac{20±28}{16} when ± is minus. Subtract 28 from 20.
x=-\frac{1}{2}
Reduce the fraction \frac{-8}{16} to lowest terms by extracting and canceling out 8.
8x^{2}-20x-12=8\left(x-3\right)\left(x-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 3 for x_{1} and -\frac{1}{2} for x_{2}.
8x^{2}-20x-12=8\left(x-3\right)\left(x+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8x^{2}-20x-12=8\left(x-3\right)\times \frac{2x+1}{2}
Add \frac{1}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-20x-12=4\left(x-3\right)\left(2x+1\right)
Cancel out 2, the greatest common factor in 8 and 2.