Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-18x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 8\left(-15\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 8\left(-15\right)}}{2\times 8}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-32\left(-15\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-18\right)±\sqrt{324+480}}{2\times 8}
Multiply -32 times -15.
x=\frac{-\left(-18\right)±\sqrt{804}}{2\times 8}
Add 324 to 480.
x=\frac{-\left(-18\right)±2\sqrt{201}}{2\times 8}
Take the square root of 804.
x=\frac{18±2\sqrt{201}}{2\times 8}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{201}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{201}+18}{16}
Now solve the equation x=\frac{18±2\sqrt{201}}{16} when ± is plus. Add 18 to 2\sqrt{201}.
x=\frac{\sqrt{201}+9}{8}
Divide 18+2\sqrt{201} by 16.
x=\frac{18-2\sqrt{201}}{16}
Now solve the equation x=\frac{18±2\sqrt{201}}{16} when ± is minus. Subtract 2\sqrt{201} from 18.
x=\frac{9-\sqrt{201}}{8}
Divide 18-2\sqrt{201} by 16.
8x^{2}-18x-15=8\left(x-\frac{\sqrt{201}+9}{8}\right)\left(x-\frac{9-\sqrt{201}}{8}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9+\sqrt{201}}{8} for x_{1} and \frac{9-\sqrt{201}}{8} for x_{2}.