Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-18x+13=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 8\times 13}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -18 for b, and 13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 8\times 13}}{2\times 8}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-32\times 13}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-18\right)±\sqrt{324-416}}{2\times 8}
Multiply -32 times 13.
x=\frac{-\left(-18\right)±\sqrt{-92}}{2\times 8}
Add 324 to -416.
x=\frac{-\left(-18\right)±2\sqrt{23}i}{2\times 8}
Take the square root of -92.
x=\frac{18±2\sqrt{23}i}{2\times 8}
The opposite of -18 is 18.
x=\frac{18±2\sqrt{23}i}{16}
Multiply 2 times 8.
x=\frac{18+2\sqrt{23}i}{16}
Now solve the equation x=\frac{18±2\sqrt{23}i}{16} when ± is plus. Add 18 to 2i\sqrt{23}.
x=\frac{9+\sqrt{23}i}{8}
Divide 18+2i\sqrt{23} by 16.
x=\frac{-2\sqrt{23}i+18}{16}
Now solve the equation x=\frac{18±2\sqrt{23}i}{16} when ± is minus. Subtract 2i\sqrt{23} from 18.
x=\frac{-\sqrt{23}i+9}{8}
Divide 18-2i\sqrt{23} by 16.
x=\frac{9+\sqrt{23}i}{8} x=\frac{-\sqrt{23}i+9}{8}
The equation is now solved.
8x^{2}-18x+13=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-18x+13-13=-13
Subtract 13 from both sides of the equation.
8x^{2}-18x=-13
Subtracting 13 from itself leaves 0.
\frac{8x^{2}-18x}{8}=-\frac{13}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{18}{8}\right)x=-\frac{13}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{9}{4}x=-\frac{13}{8}
Reduce the fraction \frac{-18}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{9}{4}x+\left(-\frac{9}{8}\right)^{2}=-\frac{13}{8}+\left(-\frac{9}{8}\right)^{2}
Divide -\frac{9}{4}, the coefficient of the x term, by 2 to get -\frac{9}{8}. Then add the square of -\frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{13}{8}+\frac{81}{64}
Square -\frac{9}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{9}{4}x+\frac{81}{64}=-\frac{23}{64}
Add -\frac{13}{8} to \frac{81}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{9}{8}\right)^{2}=-\frac{23}{64}
Factor x^{2}-\frac{9}{4}x+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{8}\right)^{2}}=\sqrt{-\frac{23}{64}}
Take the square root of both sides of the equation.
x-\frac{9}{8}=\frac{\sqrt{23}i}{8} x-\frac{9}{8}=-\frac{\sqrt{23}i}{8}
Simplify.
x=\frac{9+\sqrt{23}i}{8} x=\frac{-\sqrt{23}i+9}{8}
Add \frac{9}{8} to both sides of the equation.