Factor
\left(2x-1\right)\left(4x-3\right)
Evaluate
\left(2x-1\right)\left(4x-3\right)
Graph
Share
Copied to clipboard
a+b=-10 ab=8\times 3=24
Factor the expression by grouping. First, the expression needs to be rewritten as 8x^{2}+ax+bx+3. To find a and b, set up a system to be solved.
-1,-24 -2,-12 -3,-8 -4,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Calculate the sum for each pair.
a=-6 b=-4
The solution is the pair that gives sum -10.
\left(8x^{2}-6x\right)+\left(-4x+3\right)
Rewrite 8x^{2}-10x+3 as \left(8x^{2}-6x\right)+\left(-4x+3\right).
2x\left(4x-3\right)-\left(4x-3\right)
Factor out 2x in the first and -1 in the second group.
\left(4x-3\right)\left(2x-1\right)
Factor out common term 4x-3 by using distributive property.
8x^{2}-10x+3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 8\times 3}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 8\times 3}}{2\times 8}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-32\times 3}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 8}
Multiply -32 times 3.
x=\frac{-\left(-10\right)±\sqrt{4}}{2\times 8}
Add 100 to -96.
x=\frac{-\left(-10\right)±2}{2\times 8}
Take the square root of 4.
x=\frac{10±2}{2\times 8}
The opposite of -10 is 10.
x=\frac{10±2}{16}
Multiply 2 times 8.
x=\frac{12}{16}
Now solve the equation x=\frac{10±2}{16} when ± is plus. Add 10 to 2.
x=\frac{3}{4}
Reduce the fraction \frac{12}{16} to lowest terms by extracting and canceling out 4.
x=\frac{8}{16}
Now solve the equation x=\frac{10±2}{16} when ± is minus. Subtract 2 from 10.
x=\frac{1}{2}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
8x^{2}-10x+3=8\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{4} for x_{1} and \frac{1}{2} for x_{2}.
8x^{2}-10x+3=8\times \frac{4x-3}{4}\left(x-\frac{1}{2}\right)
Subtract \frac{3}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-10x+3=8\times \frac{4x-3}{4}\times \frac{2x-1}{2}
Subtract \frac{1}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-10x+3=8\times \frac{\left(4x-3\right)\left(2x-1\right)}{4\times 2}
Multiply \frac{4x-3}{4} times \frac{2x-1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
8x^{2}-10x+3=8\times \frac{\left(4x-3\right)\left(2x-1\right)}{8}
Multiply 4 times 2.
8x^{2}-10x+3=\left(4x-3\right)\left(2x-1\right)
Cancel out 8, the greatest common factor in 8 and 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}