Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+965x+5=122
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8x^{2}+965x+5-122=122-122
Subtract 122 from both sides of the equation.
8x^{2}+965x+5-122=0
Subtracting 122 from itself leaves 0.
8x^{2}+965x-117=0
Subtract 122 from 5.
x=\frac{-965±\sqrt{965^{2}-4\times 8\left(-117\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 965 for b, and -117 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-965±\sqrt{931225-4\times 8\left(-117\right)}}{2\times 8}
Square 965.
x=\frac{-965±\sqrt{931225-32\left(-117\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-965±\sqrt{931225+3744}}{2\times 8}
Multiply -32 times -117.
x=\frac{-965±\sqrt{934969}}{2\times 8}
Add 931225 to 3744.
x=\frac{-965±7\sqrt{19081}}{2\times 8}
Take the square root of 934969.
x=\frac{-965±7\sqrt{19081}}{16}
Multiply 2 times 8.
x=\frac{7\sqrt{19081}-965}{16}
Now solve the equation x=\frac{-965±7\sqrt{19081}}{16} when ± is plus. Add -965 to 7\sqrt{19081}.
x=\frac{-7\sqrt{19081}-965}{16}
Now solve the equation x=\frac{-965±7\sqrt{19081}}{16} when ± is minus. Subtract 7\sqrt{19081} from -965.
x=\frac{7\sqrt{19081}-965}{16} x=\frac{-7\sqrt{19081}-965}{16}
The equation is now solved.
8x^{2}+965x+5=122
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}+965x+5-5=122-5
Subtract 5 from both sides of the equation.
8x^{2}+965x=122-5
Subtracting 5 from itself leaves 0.
8x^{2}+965x=117
Subtract 5 from 122.
\frac{8x^{2}+965x}{8}=\frac{117}{8}
Divide both sides by 8.
x^{2}+\frac{965}{8}x=\frac{117}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{965}{8}x+\left(\frac{965}{16}\right)^{2}=\frac{117}{8}+\left(\frac{965}{16}\right)^{2}
Divide \frac{965}{8}, the coefficient of the x term, by 2 to get \frac{965}{16}. Then add the square of \frac{965}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{965}{8}x+\frac{931225}{256}=\frac{117}{8}+\frac{931225}{256}
Square \frac{965}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{965}{8}x+\frac{931225}{256}=\frac{934969}{256}
Add \frac{117}{8} to \frac{931225}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{965}{16}\right)^{2}=\frac{934969}{256}
Factor x^{2}+\frac{965}{8}x+\frac{931225}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{965}{16}\right)^{2}}=\sqrt{\frac{934969}{256}}
Take the square root of both sides of the equation.
x+\frac{965}{16}=\frac{7\sqrt{19081}}{16} x+\frac{965}{16}=-\frac{7\sqrt{19081}}{16}
Simplify.
x=\frac{7\sqrt{19081}-965}{16} x=\frac{-7\sqrt{19081}-965}{16}
Subtract \frac{965}{16} from both sides of the equation.