Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+7x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\times 8\times 4}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 7 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 8\times 4}}{2\times 8}
Square 7.
x=\frac{-7±\sqrt{49-32\times 4}}{2\times 8}
Multiply -4 times 8.
x=\frac{-7±\sqrt{49-128}}{2\times 8}
Multiply -32 times 4.
x=\frac{-7±\sqrt{-79}}{2\times 8}
Add 49 to -128.
x=\frac{-7±\sqrt{79}i}{2\times 8}
Take the square root of -79.
x=\frac{-7±\sqrt{79}i}{16}
Multiply 2 times 8.
x=\frac{-7+\sqrt{79}i}{16}
Now solve the equation x=\frac{-7±\sqrt{79}i}{16} when ± is plus. Add -7 to i\sqrt{79}.
x=\frac{-\sqrt{79}i-7}{16}
Now solve the equation x=\frac{-7±\sqrt{79}i}{16} when ± is minus. Subtract i\sqrt{79} from -7.
x=\frac{-7+\sqrt{79}i}{16} x=\frac{-\sqrt{79}i-7}{16}
The equation is now solved.
8x^{2}+7x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}+7x+4-4=-4
Subtract 4 from both sides of the equation.
8x^{2}+7x=-4
Subtracting 4 from itself leaves 0.
\frac{8x^{2}+7x}{8}=-\frac{4}{8}
Divide both sides by 8.
x^{2}+\frac{7}{8}x=-\frac{4}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{7}{8}x=-\frac{1}{2}
Reduce the fraction \frac{-4}{8} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{7}{8}x+\left(\frac{7}{16}\right)^{2}=-\frac{1}{2}+\left(\frac{7}{16}\right)^{2}
Divide \frac{7}{8}, the coefficient of the x term, by 2 to get \frac{7}{16}. Then add the square of \frac{7}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{8}x+\frac{49}{256}=-\frac{1}{2}+\frac{49}{256}
Square \frac{7}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{8}x+\frac{49}{256}=-\frac{79}{256}
Add -\frac{1}{2} to \frac{49}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{16}\right)^{2}=-\frac{79}{256}
Factor x^{2}+\frac{7}{8}x+\frac{49}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{16}\right)^{2}}=\sqrt{-\frac{79}{256}}
Take the square root of both sides of the equation.
x+\frac{7}{16}=\frac{\sqrt{79}i}{16} x+\frac{7}{16}=-\frac{\sqrt{79}i}{16}
Simplify.
x=\frac{-7+\sqrt{79}i}{16} x=\frac{-\sqrt{79}i-7}{16}
Subtract \frac{7}{16} from both sides of the equation.