Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+5x-25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\times 8\left(-25\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 5 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 8\left(-25\right)}}{2\times 8}
Square 5.
x=\frac{-5±\sqrt{25-32\left(-25\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-5±\sqrt{25+800}}{2\times 8}
Multiply -32 times -25.
x=\frac{-5±\sqrt{825}}{2\times 8}
Add 25 to 800.
x=\frac{-5±5\sqrt{33}}{2\times 8}
Take the square root of 825.
x=\frac{-5±5\sqrt{33}}{16}
Multiply 2 times 8.
x=\frac{5\sqrt{33}-5}{16}
Now solve the equation x=\frac{-5±5\sqrt{33}}{16} when ± is plus. Add -5 to 5\sqrt{33}.
x=\frac{-5\sqrt{33}-5}{16}
Now solve the equation x=\frac{-5±5\sqrt{33}}{16} when ± is minus. Subtract 5\sqrt{33} from -5.
x=\frac{5\sqrt{33}-5}{16} x=\frac{-5\sqrt{33}-5}{16}
The equation is now solved.
8x^{2}+5x-25=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}+5x-25-\left(-25\right)=-\left(-25\right)
Add 25 to both sides of the equation.
8x^{2}+5x=-\left(-25\right)
Subtracting -25 from itself leaves 0.
8x^{2}+5x=25
Subtract -25 from 0.
\frac{8x^{2}+5x}{8}=\frac{25}{8}
Divide both sides by 8.
x^{2}+\frac{5}{8}x=\frac{25}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{5}{8}x+\left(\frac{5}{16}\right)^{2}=\frac{25}{8}+\left(\frac{5}{16}\right)^{2}
Divide \frac{5}{8}, the coefficient of the x term, by 2 to get \frac{5}{16}. Then add the square of \frac{5}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{25}{8}+\frac{25}{256}
Square \frac{5}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{825}{256}
Add \frac{25}{8} to \frac{25}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{16}\right)^{2}=\frac{825}{256}
Factor x^{2}+\frac{5}{8}x+\frac{25}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{16}\right)^{2}}=\sqrt{\frac{825}{256}}
Take the square root of both sides of the equation.
x+\frac{5}{16}=\frac{5\sqrt{33}}{16} x+\frac{5}{16}=-\frac{5\sqrt{33}}{16}
Simplify.
x=\frac{5\sqrt{33}-5}{16} x=\frac{-5\sqrt{33}-5}{16}
Subtract \frac{5}{16} from both sides of the equation.