Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+5x-2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 8\left(-2\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\times 8\left(-2\right)}}{2\times 8}
Square 5.
x=\frac{-5±\sqrt{25-32\left(-2\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-5±\sqrt{25+64}}{2\times 8}
Multiply -32 times -2.
x=\frac{-5±\sqrt{89}}{2\times 8}
Add 25 to 64.
x=\frac{-5±\sqrt{89}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{89}-5}{16}
Now solve the equation x=\frac{-5±\sqrt{89}}{16} when ± is plus. Add -5 to \sqrt{89}.
x=\frac{-\sqrt{89}-5}{16}
Now solve the equation x=\frac{-5±\sqrt{89}}{16} when ± is minus. Subtract \sqrt{89} from -5.
8x^{2}+5x-2=8\left(x-\frac{\sqrt{89}-5}{16}\right)\left(x-\frac{-\sqrt{89}-5}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{89}}{16} for x_{1} and \frac{-5-\sqrt{89}}{16} for x_{2}.