Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+4x-2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\times 8\left(-2\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 4 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\times 8\left(-2\right)}}{2\times 8}
Square 4.
x=\frac{-4±\sqrt{16-32\left(-2\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-4±\sqrt{16+64}}{2\times 8}
Multiply -32 times -2.
x=\frac{-4±\sqrt{80}}{2\times 8}
Add 16 to 64.
x=\frac{-4±4\sqrt{5}}{2\times 8}
Take the square root of 80.
x=\frac{-4±4\sqrt{5}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{5}-4}{16}
Now solve the equation x=\frac{-4±4\sqrt{5}}{16} when ± is plus. Add -4 to 4\sqrt{5}.
x=\frac{\sqrt{5}-1}{4}
Divide -4+4\sqrt{5} by 16.
x=\frac{-4\sqrt{5}-4}{16}
Now solve the equation x=\frac{-4±4\sqrt{5}}{16} when ± is minus. Subtract 4\sqrt{5} from -4.
x=\frac{-\sqrt{5}-1}{4}
Divide -4-4\sqrt{5} by 16.
x=\frac{\sqrt{5}-1}{4} x=\frac{-\sqrt{5}-1}{4}
The equation is now solved.
8x^{2}+4x-2=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}+4x-2-\left(-2\right)=-\left(-2\right)
Add 2 to both sides of the equation.
8x^{2}+4x=-\left(-2\right)
Subtracting -2 from itself leaves 0.
8x^{2}+4x=2
Subtract -2 from 0.
\frac{8x^{2}+4x}{8}=\frac{2}{8}
Divide both sides by 8.
x^{2}+\frac{4}{8}x=\frac{2}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{1}{2}x=\frac{2}{8}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{2}x=\frac{1}{4}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{4}+\left(\frac{1}{4}\right)^{2}
Divide \frac{1}{2}, the coefficient of the x term, by 2 to get \frac{1}{4}. Then add the square of \frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{4}+\frac{1}{16}
Square \frac{1}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{5}{16}
Add \frac{1}{4} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{4}\right)^{2}=\frac{5}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Take the square root of both sides of the equation.
x+\frac{1}{4}=\frac{\sqrt{5}}{4} x+\frac{1}{4}=-\frac{\sqrt{5}}{4}
Simplify.
x=\frac{\sqrt{5}-1}{4} x=\frac{-\sqrt{5}-1}{4}
Subtract \frac{1}{4} from both sides of the equation.