Solve for x
x=\frac{3\sqrt{10}}{4}-1\approx 1.371708245
x=-\frac{3\sqrt{10}}{4}-1\approx -3.371708245
Graph
Share
Copied to clipboard
8x^{2}+16x=37
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8x^{2}+16x-37=37-37
Subtract 37 from both sides of the equation.
8x^{2}+16x-37=0
Subtracting 37 from itself leaves 0.
x=\frac{-16±\sqrt{16^{2}-4\times 8\left(-37\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 16 for b, and -37 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\times 8\left(-37\right)}}{2\times 8}
Square 16.
x=\frac{-16±\sqrt{256-32\left(-37\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-16±\sqrt{256+1184}}{2\times 8}
Multiply -32 times -37.
x=\frac{-16±\sqrt{1440}}{2\times 8}
Add 256 to 1184.
x=\frac{-16±12\sqrt{10}}{2\times 8}
Take the square root of 1440.
x=\frac{-16±12\sqrt{10}}{16}
Multiply 2 times 8.
x=\frac{12\sqrt{10}-16}{16}
Now solve the equation x=\frac{-16±12\sqrt{10}}{16} when ± is plus. Add -16 to 12\sqrt{10}.
x=\frac{3\sqrt{10}}{4}-1
Divide -16+12\sqrt{10} by 16.
x=\frac{-12\sqrt{10}-16}{16}
Now solve the equation x=\frac{-16±12\sqrt{10}}{16} when ± is minus. Subtract 12\sqrt{10} from -16.
x=-\frac{3\sqrt{10}}{4}-1
Divide -16-12\sqrt{10} by 16.
x=\frac{3\sqrt{10}}{4}-1 x=-\frac{3\sqrt{10}}{4}-1
The equation is now solved.
8x^{2}+16x=37
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}+16x}{8}=\frac{37}{8}
Divide both sides by 8.
x^{2}+\frac{16}{8}x=\frac{37}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+2x=\frac{37}{8}
Divide 16 by 8.
x^{2}+2x+1^{2}=\frac{37}{8}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{37}{8}+1
Square 1.
x^{2}+2x+1=\frac{45}{8}
Add \frac{37}{8} to 1.
\left(x+1\right)^{2}=\frac{45}{8}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{45}{8}}
Take the square root of both sides of the equation.
x+1=\frac{3\sqrt{10}}{4} x+1=-\frac{3\sqrt{10}}{4}
Simplify.
x=\frac{3\sqrt{10}}{4}-1 x=-\frac{3\sqrt{10}}{4}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}