Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+12x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 8}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\times 8}}{2\times 8}
Square 12.
x=\frac{-12±\sqrt{144-32}}{2\times 8}
Multiply -4 times 8.
x=\frac{-12±\sqrt{112}}{2\times 8}
Add 144 to -32.
x=\frac{-12±4\sqrt{7}}{2\times 8}
Take the square root of 112.
x=\frac{-12±4\sqrt{7}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{7}-12}{16}
Now solve the equation x=\frac{-12±4\sqrt{7}}{16} when ± is plus. Add -12 to 4\sqrt{7}.
x=\frac{\sqrt{7}-3}{4}
Divide -12+4\sqrt{7} by 16.
x=\frac{-4\sqrt{7}-12}{16}
Now solve the equation x=\frac{-12±4\sqrt{7}}{16} when ± is minus. Subtract 4\sqrt{7} from -12.
x=\frac{-\sqrt{7}-3}{4}
Divide -12-4\sqrt{7} by 16.
8x^{2}+12x+1=8\left(x-\frac{\sqrt{7}-3}{4}\right)\left(x-\frac{-\sqrt{7}-3}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{7}}{4} for x_{1} and \frac{-3-\sqrt{7}}{4} for x_{2}.