Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}=18\times 32
Add 18 and 14 to get 32.
8x^{2}=576
Multiply 18 and 32 to get 576.
x^{2}=\frac{576}{8}
Divide both sides by 8.
x^{2}=72
Divide 576 by 8 to get 72.
x=6\sqrt{2} x=-6\sqrt{2}
Take the square root of both sides of the equation.
8x^{2}=18\times 32
Add 18 and 14 to get 32.
8x^{2}=576
Multiply 18 and 32 to get 576.
8x^{2}-576=0
Subtract 576 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-576\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and -576 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-576\right)}}{2\times 8}
Square 0.
x=\frac{0±\sqrt{-32\left(-576\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{0±\sqrt{18432}}{2\times 8}
Multiply -32 times -576.
x=\frac{0±96\sqrt{2}}{2\times 8}
Take the square root of 18432.
x=\frac{0±96\sqrt{2}}{16}
Multiply 2 times 8.
x=6\sqrt{2}
Now solve the equation x=\frac{0±96\sqrt{2}}{16} when ± is plus.
x=-6\sqrt{2}
Now solve the equation x=\frac{0±96\sqrt{2}}{16} when ± is minus.
x=6\sqrt{2} x=-6\sqrt{2}
The equation is now solved.