Solve for x
x=-\frac{9999666699996666\sqrt{3191}}{5}+\frac{3468}{275}\approx -1.129741084 \cdot 10^{17}
Graph
Share
Copied to clipboard
72-5x=3\times 3-\frac{3}{55}+9999666699996666\sqrt{3191}
Multiply 8 and 9 to get 72.
72-5x=9-\frac{3}{55}+9999666699996666\sqrt{3191}
Multiply 3 and 3 to get 9.
72-5x=\frac{495}{55}-\frac{3}{55}+9999666699996666\sqrt{3191}
Convert 9 to fraction \frac{495}{55}.
72-5x=\frac{495-3}{55}+9999666699996666\sqrt{3191}
Since \frac{495}{55} and \frac{3}{55} have the same denominator, subtract them by subtracting their numerators.
72-5x=\frac{492}{55}+9999666699996666\sqrt{3191}
Subtract 3 from 495 to get 492.
-5x=\frac{492}{55}+9999666699996666\sqrt{3191}-72
Subtract 72 from both sides.
-5x=\frac{492}{55}+9999666699996666\sqrt{3191}-\frac{3960}{55}
Convert 72 to fraction \frac{3960}{55}.
-5x=\frac{492-3960}{55}+9999666699996666\sqrt{3191}
Since \frac{492}{55} and \frac{3960}{55} have the same denominator, subtract them by subtracting their numerators.
-5x=-\frac{3468}{55}+9999666699996666\sqrt{3191}
Subtract 3960 from 492 to get -3468.
-5x=9999666699996666\sqrt{3191}-\frac{3468}{55}
The equation is in standard form.
\frac{-5x}{-5}=\frac{9999666699996666\sqrt{3191}-\frac{3468}{55}}{-5}
Divide both sides by -5.
x=\frac{9999666699996666\sqrt{3191}-\frac{3468}{55}}{-5}
Dividing by -5 undoes the multiplication by -5.
x=-\frac{9999666699996666\sqrt{3191}}{5}+\frac{3468}{275}
Divide -\frac{3468}{55}+9999666699996666\sqrt{3191} by -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}