Solve for x
x=-10
x=5
Graph
Share
Copied to clipboard
8\times 27=\left(x+4\right)\left(4x+4\right)
Add 8 and 19 to get 27.
216=\left(x+4\right)\left(4x+4\right)
Multiply 8 and 27 to get 216.
216=4x^{2}+20x+16
Use the distributive property to multiply x+4 by 4x+4 and combine like terms.
4x^{2}+20x+16=216
Swap sides so that all variable terms are on the left hand side.
4x^{2}+20x+16-216=0
Subtract 216 from both sides.
4x^{2}+20x-200=0
Subtract 216 from 16 to get -200.
x=\frac{-20±\sqrt{20^{2}-4\times 4\left(-200\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 20 for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-20±\sqrt{400-4\times 4\left(-200\right)}}{2\times 4}
Square 20.
x=\frac{-20±\sqrt{400-16\left(-200\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-20±\sqrt{400+3200}}{2\times 4}
Multiply -16 times -200.
x=\frac{-20±\sqrt{3600}}{2\times 4}
Add 400 to 3200.
x=\frac{-20±60}{2\times 4}
Take the square root of 3600.
x=\frac{-20±60}{8}
Multiply 2 times 4.
x=\frac{40}{8}
Now solve the equation x=\frac{-20±60}{8} when ± is plus. Add -20 to 60.
x=5
Divide 40 by 8.
x=-\frac{80}{8}
Now solve the equation x=\frac{-20±60}{8} when ± is minus. Subtract 60 from -20.
x=-10
Divide -80 by 8.
x=5 x=-10
The equation is now solved.
8\times 27=\left(x+4\right)\left(4x+4\right)
Add 8 and 19 to get 27.
216=\left(x+4\right)\left(4x+4\right)
Multiply 8 and 27 to get 216.
216=4x^{2}+20x+16
Use the distributive property to multiply x+4 by 4x+4 and combine like terms.
4x^{2}+20x+16=216
Swap sides so that all variable terms are on the left hand side.
4x^{2}+20x=216-16
Subtract 16 from both sides.
4x^{2}+20x=200
Subtract 16 from 216 to get 200.
\frac{4x^{2}+20x}{4}=\frac{200}{4}
Divide both sides by 4.
x^{2}+\frac{20}{4}x=\frac{200}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+5x=\frac{200}{4}
Divide 20 by 4.
x^{2}+5x=50
Divide 200 by 4.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=50+\left(\frac{5}{2}\right)^{2}
Divide 5, the coefficient of the x term, by 2 to get \frac{5}{2}. Then add the square of \frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+5x+\frac{25}{4}=50+\frac{25}{4}
Square \frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+5x+\frac{25}{4}=\frac{225}{4}
Add 50 to \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{225}{4}
Factor x^{2}+5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{225}{4}}
Take the square root of both sides of the equation.
x+\frac{5}{2}=\frac{15}{2} x+\frac{5}{2}=-\frac{15}{2}
Simplify.
x=5 x=-10
Subtract \frac{5}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}