Evaluate
\frac{131}{55}\approx 2.381818182
Factor
\frac{131}{5 \cdot 11} = 2\frac{21}{55} = 2.381818181818182
Share
Copied to clipboard
\frac{88+9}{11}-\frac{3\times 5+4}{5}-\frac{2\times 11+7}{11}
Multiply 8 and 11 to get 88.
\frac{97}{11}-\frac{3\times 5+4}{5}-\frac{2\times 11+7}{11}
Add 88 and 9 to get 97.
\frac{97}{11}-\frac{15+4}{5}-\frac{2\times 11+7}{11}
Multiply 3 and 5 to get 15.
\frac{97}{11}-\frac{19}{5}-\frac{2\times 11+7}{11}
Add 15 and 4 to get 19.
\frac{485}{55}-\frac{209}{55}-\frac{2\times 11+7}{11}
Least common multiple of 11 and 5 is 55. Convert \frac{97}{11} and \frac{19}{5} to fractions with denominator 55.
\frac{485-209}{55}-\frac{2\times 11+7}{11}
Since \frac{485}{55} and \frac{209}{55} have the same denominator, subtract them by subtracting their numerators.
\frac{276}{55}-\frac{2\times 11+7}{11}
Subtract 209 from 485 to get 276.
\frac{276}{55}-\frac{22+7}{11}
Multiply 2 and 11 to get 22.
\frac{276}{55}-\frac{29}{11}
Add 22 and 7 to get 29.
\frac{276}{55}-\frac{145}{55}
Least common multiple of 55 and 11 is 55. Convert \frac{276}{55} and \frac{29}{11} to fractions with denominator 55.
\frac{276-145}{55}
Since \frac{276}{55} and \frac{145}{55} have the same denominator, subtract them by subtracting their numerators.
\frac{131}{55}
Subtract 145 from 276 to get 131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}