Evaluate
\frac{15}{2}=7.5
Factor
\frac{3 \cdot 5}{2} = 7\frac{1}{2} = 7.5
Share
Copied to clipboard
\frac{40+4}{5}-\frac{4\times 2+1}{2}+\frac{3\times 5+1}{5}
Multiply 8 and 5 to get 40.
\frac{44}{5}-\frac{4\times 2+1}{2}+\frac{3\times 5+1}{5}
Add 40 and 4 to get 44.
\frac{44}{5}-\frac{8+1}{2}+\frac{3\times 5+1}{5}
Multiply 4 and 2 to get 8.
\frac{44}{5}-\frac{9}{2}+\frac{3\times 5+1}{5}
Add 8 and 1 to get 9.
\frac{88}{10}-\frac{45}{10}+\frac{3\times 5+1}{5}
Least common multiple of 5 and 2 is 10. Convert \frac{44}{5} and \frac{9}{2} to fractions with denominator 10.
\frac{88-45}{10}+\frac{3\times 5+1}{5}
Since \frac{88}{10} and \frac{45}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{43}{10}+\frac{3\times 5+1}{5}
Subtract 45 from 88 to get 43.
\frac{43}{10}+\frac{15+1}{5}
Multiply 3 and 5 to get 15.
\frac{43}{10}+\frac{16}{5}
Add 15 and 1 to get 16.
\frac{43}{10}+\frac{32}{10}
Least common multiple of 10 and 5 is 10. Convert \frac{43}{10} and \frac{16}{5} to fractions with denominator 10.
\frac{43+32}{10}
Since \frac{43}{10} and \frac{32}{10} have the same denominator, add them by adding their numerators.
\frac{75}{10}
Add 43 and 32 to get 75.
\frac{15}{2}
Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}