Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+6x=7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8x^{2}+6x-7=7-7
Subtract 7 from both sides of the equation.
8x^{2}+6x-7=0
Subtracting 7 from itself leaves 0.
x=\frac{-6±\sqrt{6^{2}-4\times 8\left(-7\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 6 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 8\left(-7\right)}}{2\times 8}
Square 6.
x=\frac{-6±\sqrt{36-32\left(-7\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-6±\sqrt{36+224}}{2\times 8}
Multiply -32 times -7.
x=\frac{-6±\sqrt{260}}{2\times 8}
Add 36 to 224.
x=\frac{-6±2\sqrt{65}}{2\times 8}
Take the square root of 260.
x=\frac{-6±2\sqrt{65}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{65}-6}{16}
Now solve the equation x=\frac{-6±2\sqrt{65}}{16} when ± is plus. Add -6 to 2\sqrt{65}.
x=\frac{\sqrt{65}-3}{8}
Divide -6+2\sqrt{65} by 16.
x=\frac{-2\sqrt{65}-6}{16}
Now solve the equation x=\frac{-6±2\sqrt{65}}{16} when ± is minus. Subtract 2\sqrt{65} from -6.
x=\frac{-\sqrt{65}-3}{8}
Divide -6-2\sqrt{65} by 16.
x=\frac{\sqrt{65}-3}{8} x=\frac{-\sqrt{65}-3}{8}
The equation is now solved.
8x^{2}+6x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}+6x}{8}=\frac{7}{8}
Divide both sides by 8.
x^{2}+\frac{6}{8}x=\frac{7}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{3}{4}x=\frac{7}{8}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{7}{8}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{7}{8}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{65}{64}
Add \frac{7}{8} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=\frac{65}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{65}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{\sqrt{65}}{8} x+\frac{3}{8}=-\frac{\sqrt{65}}{8}
Simplify.
x=\frac{\sqrt{65}-3}{8} x=\frac{-\sqrt{65}-3}{8}
Subtract \frac{3}{8} from both sides of the equation.