Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

8\left(9b^{2}-48b+64\right)-\left(9-b\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3b-8\right)^{2}.
72b^{2}-384b+512-\left(9-b\right)^{2}=0
Use the distributive property to multiply 8 by 9b^{2}-48b+64.
72b^{2}-384b+512-\left(81-18b+b^{2}\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-b\right)^{2}.
72b^{2}-384b+512-81+18b-b^{2}=0
To find the opposite of 81-18b+b^{2}, find the opposite of each term.
72b^{2}-384b+431+18b-b^{2}=0
Subtract 81 from 512 to get 431.
72b^{2}-366b+431-b^{2}=0
Combine -384b and 18b to get -366b.
71b^{2}-366b+431=0
Combine 72b^{2} and -b^{2} to get 71b^{2}.
b=\frac{-\left(-366\right)±\sqrt{\left(-366\right)^{2}-4\times 71\times 431}}{2\times 71}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 71 for a, -366 for b, and 431 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-366\right)±\sqrt{133956-4\times 71\times 431}}{2\times 71}
Square -366.
b=\frac{-\left(-366\right)±\sqrt{133956-284\times 431}}{2\times 71}
Multiply -4 times 71.
b=\frac{-\left(-366\right)±\sqrt{133956-122404}}{2\times 71}
Multiply -284 times 431.
b=\frac{-\left(-366\right)±\sqrt{11552}}{2\times 71}
Add 133956 to -122404.
b=\frac{-\left(-366\right)±76\sqrt{2}}{2\times 71}
Take the square root of 11552.
b=\frac{366±76\sqrt{2}}{2\times 71}
The opposite of -366 is 366.
b=\frac{366±76\sqrt{2}}{142}
Multiply 2 times 71.
b=\frac{76\sqrt{2}+366}{142}
Now solve the equation b=\frac{366±76\sqrt{2}}{142} when ± is plus. Add 366 to 76\sqrt{2}.
b=\frac{38\sqrt{2}+183}{71}
Divide 366+76\sqrt{2} by 142.
b=\frac{366-76\sqrt{2}}{142}
Now solve the equation b=\frac{366±76\sqrt{2}}{142} when ± is minus. Subtract 76\sqrt{2} from 366.
b=\frac{183-38\sqrt{2}}{71}
Divide 366-76\sqrt{2} by 142.
b=\frac{38\sqrt{2}+183}{71} b=\frac{183-38\sqrt{2}}{71}
The equation is now solved.
8\left(9b^{2}-48b+64\right)-\left(9-b\right)^{2}=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3b-8\right)^{2}.
72b^{2}-384b+512-\left(9-b\right)^{2}=0
Use the distributive property to multiply 8 by 9b^{2}-48b+64.
72b^{2}-384b+512-\left(81-18b+b^{2}\right)=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9-b\right)^{2}.
72b^{2}-384b+512-81+18b-b^{2}=0
To find the opposite of 81-18b+b^{2}, find the opposite of each term.
72b^{2}-384b+431+18b-b^{2}=0
Subtract 81 from 512 to get 431.
72b^{2}-366b+431-b^{2}=0
Combine -384b and 18b to get -366b.
71b^{2}-366b+431=0
Combine 72b^{2} and -b^{2} to get 71b^{2}.
71b^{2}-366b=-431
Subtract 431 from both sides. Anything subtracted from zero gives its negation.
\frac{71b^{2}-366b}{71}=-\frac{431}{71}
Divide both sides by 71.
b^{2}-\frac{366}{71}b=-\frac{431}{71}
Dividing by 71 undoes the multiplication by 71.
b^{2}-\frac{366}{71}b+\left(-\frac{183}{71}\right)^{2}=-\frac{431}{71}+\left(-\frac{183}{71}\right)^{2}
Divide -\frac{366}{71}, the coefficient of the x term, by 2 to get -\frac{183}{71}. Then add the square of -\frac{183}{71} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{366}{71}b+\frac{33489}{5041}=-\frac{431}{71}+\frac{33489}{5041}
Square -\frac{183}{71} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{366}{71}b+\frac{33489}{5041}=\frac{2888}{5041}
Add -\frac{431}{71} to \frac{33489}{5041} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{183}{71}\right)^{2}=\frac{2888}{5041}
Factor b^{2}-\frac{366}{71}b+\frac{33489}{5041}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{183}{71}\right)^{2}}=\sqrt{\frac{2888}{5041}}
Take the square root of both sides of the equation.
b-\frac{183}{71}=\frac{38\sqrt{2}}{71} b-\frac{183}{71}=-\frac{38\sqrt{2}}{71}
Simplify.
b=\frac{38\sqrt{2}+183}{71} b=\frac{183-38\sqrt{2}}{71}
Add \frac{183}{71} to both sides of the equation.