Evaluate
48\left(\sqrt{2}+2-\sqrt{6}-2\sqrt{3}\right)\approx -119.970134186
Factor
48 {(\sqrt{2} + 2 - \sqrt{6} - 2 \sqrt{3})} = -119.970134186
Share
Copied to clipboard
\left(16\sqrt{3}+8\sqrt{6}\right)\left(2\sqrt{3}-6\right)
Use the distributive property to multiply 8 by 2\sqrt{3}+\sqrt{6}.
32\left(\sqrt{3}\right)^{2}-96\sqrt{3}+16\sqrt{3}\sqrt{6}-48\sqrt{6}
Apply the distributive property by multiplying each term of 16\sqrt{3}+8\sqrt{6} by each term of 2\sqrt{3}-6.
32\times 3-96\sqrt{3}+16\sqrt{3}\sqrt{6}-48\sqrt{6}
The square of \sqrt{3} is 3.
96-96\sqrt{3}+16\sqrt{3}\sqrt{6}-48\sqrt{6}
Multiply 32 and 3 to get 96.
96-96\sqrt{3}+16\sqrt{3}\sqrt{3}\sqrt{2}-48\sqrt{6}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
96-96\sqrt{3}+16\times 3\sqrt{2}-48\sqrt{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
96-96\sqrt{3}+48\sqrt{2}-48\sqrt{6}
Multiply 16 and 3 to get 48.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}