8 \cdot \frac { 3 } { 2 } + \frac { 3 } { 2 } \cdot 5 - 3 \cdot 1,5
Evaluate
15
Factor
3\times 5
Share
Copied to clipboard
\frac{8\times 3}{2}+\frac{3}{2}\times 5-3\times 1,5
Express 8\times \frac{3}{2} as a single fraction.
\frac{24}{2}+\frac{3}{2}\times 5-3\times 1,5
Multiply 8 and 3 to get 24.
12+\frac{3}{2}\times 5-3\times 1,5
Divide 24 by 2 to get 12.
12+\frac{3\times 5}{2}-3\times 1,5
Express \frac{3}{2}\times 5 as a single fraction.
12+\frac{15}{2}-3\times 1,5
Multiply 3 and 5 to get 15.
\frac{24}{2}+\frac{15}{2}-3\times 1,5
Convert 12 to fraction \frac{24}{2}.
\frac{24+15}{2}-3\times 1,5
Since \frac{24}{2} and \frac{15}{2} have the same denominator, add them by adding their numerators.
\frac{39}{2}-3\times 1,5
Add 24 and 15 to get 39.
\frac{39}{2}-4,5
Multiply 3 and 1,5 to get 4,5.
\frac{39}{2}-\frac{9}{2}
Convert decimal number 4,5 to fraction \frac{45}{10}. Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
\frac{39-9}{2}
Since \frac{39}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{30}{2}
Subtract 9 from 39 to get 30.
15
Divide 30 by 2 to get 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}