Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\times 3\left(2x-5\right)^{2}-147=0
Multiply 8 and 1 to get 8.
24\left(2x-5\right)^{2}-147=0
Multiply 8 and 3 to get 24.
24\left(4x^{2}-20x+25\right)-147=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
96x^{2}-480x+600-147=0
Use the distributive property to multiply 24 by 4x^{2}-20x+25.
96x^{2}-480x+453=0
Subtract 147 from 600 to get 453.
x=\frac{-\left(-480\right)±\sqrt{\left(-480\right)^{2}-4\times 96\times 453}}{2\times 96}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 96 for a, -480 for b, and 453 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-480\right)±\sqrt{230400-4\times 96\times 453}}{2\times 96}
Square -480.
x=\frac{-\left(-480\right)±\sqrt{230400-384\times 453}}{2\times 96}
Multiply -4 times 96.
x=\frac{-\left(-480\right)±\sqrt{230400-173952}}{2\times 96}
Multiply -384 times 453.
x=\frac{-\left(-480\right)±\sqrt{56448}}{2\times 96}
Add 230400 to -173952.
x=\frac{-\left(-480\right)±168\sqrt{2}}{2\times 96}
Take the square root of 56448.
x=\frac{480±168\sqrt{2}}{2\times 96}
The opposite of -480 is 480.
x=\frac{480±168\sqrt{2}}{192}
Multiply 2 times 96.
x=\frac{168\sqrt{2}+480}{192}
Now solve the equation x=\frac{480±168\sqrt{2}}{192} when ± is plus. Add 480 to 168\sqrt{2}.
x=\frac{7\sqrt{2}}{8}+\frac{5}{2}
Divide 480+168\sqrt{2} by 192.
x=\frac{480-168\sqrt{2}}{192}
Now solve the equation x=\frac{480±168\sqrt{2}}{192} when ± is minus. Subtract 168\sqrt{2} from 480.
x=-\frac{7\sqrt{2}}{8}+\frac{5}{2}
Divide 480-168\sqrt{2} by 192.
x=\frac{7\sqrt{2}}{8}+\frac{5}{2} x=-\frac{7\sqrt{2}}{8}+\frac{5}{2}
The equation is now solved.
8\times 3\left(2x-5\right)^{2}-147=0
Multiply 8 and 1 to get 8.
24\left(2x-5\right)^{2}-147=0
Multiply 8 and 3 to get 24.
24\left(4x^{2}-20x+25\right)-147=0
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
96x^{2}-480x+600-147=0
Use the distributive property to multiply 24 by 4x^{2}-20x+25.
96x^{2}-480x+453=0
Subtract 147 from 600 to get 453.
96x^{2}-480x=-453
Subtract 453 from both sides. Anything subtracted from zero gives its negation.
\frac{96x^{2}-480x}{96}=-\frac{453}{96}
Divide both sides by 96.
x^{2}+\left(-\frac{480}{96}\right)x=-\frac{453}{96}
Dividing by 96 undoes the multiplication by 96.
x^{2}-5x=-\frac{453}{96}
Divide -480 by 96.
x^{2}-5x=-\frac{151}{32}
Reduce the fraction \frac{-453}{96} to lowest terms by extracting and canceling out 3.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-\frac{151}{32}+\left(-\frac{5}{2}\right)^{2}
Divide -5, the coefficient of the x term, by 2 to get -\frac{5}{2}. Then add the square of -\frac{5}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-5x+\frac{25}{4}=-\frac{151}{32}+\frac{25}{4}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-5x+\frac{25}{4}=\frac{49}{32}
Add -\frac{151}{32} to \frac{25}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{2}\right)^{2}=\frac{49}{32}
Factor x^{2}-5x+\frac{25}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{49}{32}}
Take the square root of both sides of the equation.
x-\frac{5}{2}=\frac{7\sqrt{2}}{8} x-\frac{5}{2}=-\frac{7\sqrt{2}}{8}
Simplify.
x=\frac{7\sqrt{2}}{8}+\frac{5}{2} x=-\frac{7\sqrt{2}}{8}+\frac{5}{2}
Add \frac{5}{2} to both sides of the equation.