Solve for C
C=2\sqrt{41}\approx 12.806248475
C=-2\sqrt{41}\approx -12.806248475
Share
Copied to clipboard
64+10^{2}=C^{2}
Calculate 8 to the power of 2 and get 64.
64+100=C^{2}
Calculate 10 to the power of 2 and get 100.
164=C^{2}
Add 64 and 100 to get 164.
C^{2}=164
Swap sides so that all variable terms are on the left hand side.
C=2\sqrt{41} C=-2\sqrt{41}
Take the square root of both sides of the equation.
64+10^{2}=C^{2}
Calculate 8 to the power of 2 and get 64.
64+100=C^{2}
Calculate 10 to the power of 2 and get 100.
164=C^{2}
Add 64 and 100 to get 164.
C^{2}=164
Swap sides so that all variable terms are on the left hand side.
C^{2}-164=0
Subtract 164 from both sides.
C=\frac{0±\sqrt{0^{2}-4\left(-164\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -164 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
C=\frac{0±\sqrt{-4\left(-164\right)}}{2}
Square 0.
C=\frac{0±\sqrt{656}}{2}
Multiply -4 times -164.
C=\frac{0±4\sqrt{41}}{2}
Take the square root of 656.
C=2\sqrt{41}
Now solve the equation C=\frac{0±4\sqrt{41}}{2} when ± is plus.
C=-2\sqrt{41}
Now solve the equation C=\frac{0±4\sqrt{41}}{2} when ± is minus.
C=2\sqrt{41} C=-2\sqrt{41}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}