Solve for a
a=-\frac{2}{3}\approx -0.666666667
a=\frac{2}{3}\approx 0.666666667
Share
Copied to clipboard
64+\left(9a\right)^{2}=10^{2}
Calculate 8 to the power of 2 and get 64.
64+9^{2}a^{2}=10^{2}
Expand \left(9a\right)^{2}.
64+81a^{2}=10^{2}
Calculate 9 to the power of 2 and get 81.
64+81a^{2}=100
Calculate 10 to the power of 2 and get 100.
64+81a^{2}-100=0
Subtract 100 from both sides.
-36+81a^{2}=0
Subtract 100 from 64 to get -36.
-4+9a^{2}=0
Divide both sides by 9.
\left(3a-2\right)\left(3a+2\right)=0
Consider -4+9a^{2}. Rewrite -4+9a^{2} as \left(3a\right)^{2}-2^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=\frac{2}{3} a=-\frac{2}{3}
To find equation solutions, solve 3a-2=0 and 3a+2=0.
64+\left(9a\right)^{2}=10^{2}
Calculate 8 to the power of 2 and get 64.
64+9^{2}a^{2}=10^{2}
Expand \left(9a\right)^{2}.
64+81a^{2}=10^{2}
Calculate 9 to the power of 2 and get 81.
64+81a^{2}=100
Calculate 10 to the power of 2 and get 100.
81a^{2}=100-64
Subtract 64 from both sides.
81a^{2}=36
Subtract 64 from 100 to get 36.
a^{2}=\frac{36}{81}
Divide both sides by 81.
a^{2}=\frac{4}{9}
Reduce the fraction \frac{36}{81} to lowest terms by extracting and canceling out 9.
a=\frac{2}{3} a=-\frac{2}{3}
Take the square root of both sides of the equation.
64+\left(9a\right)^{2}=10^{2}
Calculate 8 to the power of 2 and get 64.
64+9^{2}a^{2}=10^{2}
Expand \left(9a\right)^{2}.
64+81a^{2}=10^{2}
Calculate 9 to the power of 2 and get 81.
64+81a^{2}=100
Calculate 10 to the power of 2 and get 100.
64+81a^{2}-100=0
Subtract 100 from both sides.
-36+81a^{2}=0
Subtract 100 from 64 to get -36.
81a^{2}-36=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\times 81\left(-36\right)}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, 0 for b, and -36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 81\left(-36\right)}}{2\times 81}
Square 0.
a=\frac{0±\sqrt{-324\left(-36\right)}}{2\times 81}
Multiply -4 times 81.
a=\frac{0±\sqrt{11664}}{2\times 81}
Multiply -324 times -36.
a=\frac{0±108}{2\times 81}
Take the square root of 11664.
a=\frac{0±108}{162}
Multiply 2 times 81.
a=\frac{2}{3}
Now solve the equation a=\frac{0±108}{162} when ± is plus. Reduce the fraction \frac{108}{162} to lowest terms by extracting and canceling out 54.
a=-\frac{2}{3}
Now solve the equation a=\frac{0±108}{162} when ± is minus. Reduce the fraction \frac{-108}{162} to lowest terms by extracting and canceling out 54.
a=\frac{2}{3} a=-\frac{2}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}