Solve for t
t = \frac{\sqrt{41} + 1}{4} \approx 1.850781059
t=\frac{1-\sqrt{41}}{4}\approx -1.350781059
Share
Copied to clipboard
-16t^{2}+8t+48=8
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+8t+48-8=0
Subtract 8 from both sides.
-16t^{2}+8t+40=0
Subtract 8 from 48 to get 40.
t=\frac{-8±\sqrt{8^{2}-4\left(-16\right)\times 40}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 8 for b, and 40 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-8±\sqrt{64-4\left(-16\right)\times 40}}{2\left(-16\right)}
Square 8.
t=\frac{-8±\sqrt{64+64\times 40}}{2\left(-16\right)}
Multiply -4 times -16.
t=\frac{-8±\sqrt{64+2560}}{2\left(-16\right)}
Multiply 64 times 40.
t=\frac{-8±\sqrt{2624}}{2\left(-16\right)}
Add 64 to 2560.
t=\frac{-8±8\sqrt{41}}{2\left(-16\right)}
Take the square root of 2624.
t=\frac{-8±8\sqrt{41}}{-32}
Multiply 2 times -16.
t=\frac{8\sqrt{41}-8}{-32}
Now solve the equation t=\frac{-8±8\sqrt{41}}{-32} when ± is plus. Add -8 to 8\sqrt{41}.
t=\frac{1-\sqrt{41}}{4}
Divide -8+8\sqrt{41} by -32.
t=\frac{-8\sqrt{41}-8}{-32}
Now solve the equation t=\frac{-8±8\sqrt{41}}{-32} when ± is minus. Subtract 8\sqrt{41} from -8.
t=\frac{\sqrt{41}+1}{4}
Divide -8-8\sqrt{41} by -32.
t=\frac{1-\sqrt{41}}{4} t=\frac{\sqrt{41}+1}{4}
The equation is now solved.
-16t^{2}+8t+48=8
Swap sides so that all variable terms are on the left hand side.
-16t^{2}+8t=8-48
Subtract 48 from both sides.
-16t^{2}+8t=-40
Subtract 48 from 8 to get -40.
\frac{-16t^{2}+8t}{-16}=-\frac{40}{-16}
Divide both sides by -16.
t^{2}+\frac{8}{-16}t=-\frac{40}{-16}
Dividing by -16 undoes the multiplication by -16.
t^{2}-\frac{1}{2}t=-\frac{40}{-16}
Reduce the fraction \frac{8}{-16} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{1}{2}t=\frac{5}{2}
Reduce the fraction \frac{-40}{-16} to lowest terms by extracting and canceling out 8.
t^{2}-\frac{1}{2}t+\left(-\frac{1}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{1}{2}t+\frac{1}{16}=\frac{5}{2}+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{1}{2}t+\frac{1}{16}=\frac{41}{16}
Add \frac{5}{2} to \frac{1}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{1}{4}\right)^{2}=\frac{41}{16}
Factor t^{2}-\frac{1}{2}t+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{1}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
Take the square root of both sides of the equation.
t-\frac{1}{4}=\frac{\sqrt{41}}{4} t-\frac{1}{4}=-\frac{\sqrt{41}}{4}
Simplify.
t=\frac{\sqrt{41}+1}{4} t=\frac{1-\sqrt{41}}{4}
Add \frac{1}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}