Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-10t^{2}+890=8
Swap sides so that all variable terms are on the left hand side.
-10t^{2}=8-890
Subtract 890 from both sides.
-10t^{2}=-882
Subtract 890 from 8 to get -882.
t^{2}=\frac{-882}{-10}
Divide both sides by -10.
t^{2}=\frac{441}{5}
Reduce the fraction \frac{-882}{-10} to lowest terms by extracting and canceling out -2.
t=\frac{21\sqrt{5}}{5} t=-\frac{21\sqrt{5}}{5}
Take the square root of both sides of the equation.
-10t^{2}+890=8
Swap sides so that all variable terms are on the left hand side.
-10t^{2}+890-8=0
Subtract 8 from both sides.
-10t^{2}+882=0
Subtract 8 from 890 to get 882.
t=\frac{0±\sqrt{0^{2}-4\left(-10\right)\times 882}}{2\left(-10\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -10 for a, 0 for b, and 882 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-10\right)\times 882}}{2\left(-10\right)}
Square 0.
t=\frac{0±\sqrt{40\times 882}}{2\left(-10\right)}
Multiply -4 times -10.
t=\frac{0±\sqrt{35280}}{2\left(-10\right)}
Multiply 40 times 882.
t=\frac{0±84\sqrt{5}}{2\left(-10\right)}
Take the square root of 35280.
t=\frac{0±84\sqrt{5}}{-20}
Multiply 2 times -10.
t=-\frac{21\sqrt{5}}{5}
Now solve the equation t=\frac{0±84\sqrt{5}}{-20} when ± is plus.
t=\frac{21\sqrt{5}}{5}
Now solve the equation t=\frac{0±84\sqrt{5}}{-20} when ± is minus.
t=-\frac{21\sqrt{5}}{5} t=\frac{21\sqrt{5}}{5}
The equation is now solved.