Solve for x
x=4\sqrt{3}\approx 6.92820323
Graph
Share
Copied to clipboard
8+x\times 2\sqrt{3}=\frac{8x}{\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
8+x\times 2\sqrt{3}=\frac{8x\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{8x}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
8+x\times 2\sqrt{3}=\frac{8x\sqrt{3}}{3}
The square of \sqrt{3} is 3.
8+x\times 2\sqrt{3}-\frac{8x\sqrt{3}}{3}=0
Subtract \frac{8x\sqrt{3}}{3} from both sides.
x\times 2\sqrt{3}-\frac{8x\sqrt{3}}{3}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
3x\times 2\sqrt{3}-8x\sqrt{3}=-24
Multiply both sides of the equation by 3.
6x\sqrt{3}-8x\sqrt{3}=-24
Multiply 3 and 2 to get 6.
-2x\sqrt{3}=-24
Combine 6x\sqrt{3} and -8x\sqrt{3} to get -2x\sqrt{3}.
\left(-2\sqrt{3}\right)x=-24
The equation is in standard form.
\frac{\left(-2\sqrt{3}\right)x}{-2\sqrt{3}}=-\frac{24}{-2\sqrt{3}}
Divide both sides by -2\sqrt{3}.
x=-\frac{24}{-2\sqrt{3}}
Dividing by -2\sqrt{3} undoes the multiplication by -2\sqrt{3}.
x=4\sqrt{3}
Divide -24 by -2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}