Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-y^{2}+7y+8
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=7 ab=-8=-8
Factor the expression by grouping. First, the expression needs to be rewritten as -y^{2}+ay+by+8. To find a and b, set up a system to be solved.
-1,8 -2,4
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -8.
-1+8=7 -2+4=2
Calculate the sum for each pair.
a=8 b=-1
The solution is the pair that gives sum 7.
\left(-y^{2}+8y\right)+\left(-y+8\right)
Rewrite -y^{2}+7y+8 as \left(-y^{2}+8y\right)+\left(-y+8\right).
-y\left(y-8\right)-\left(y-8\right)
Factor out -y in the first and -1 in the second group.
\left(y-8\right)\left(-y-1\right)
Factor out common term y-8 by using distributive property.
-y^{2}+7y+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-7±\sqrt{49-4\left(-1\right)\times 8}}{2\left(-1\right)}
Square 7.
y=\frac{-7±\sqrt{49+4\times 8}}{2\left(-1\right)}
Multiply -4 times -1.
y=\frac{-7±\sqrt{49+32}}{2\left(-1\right)}
Multiply 4 times 8.
y=\frac{-7±\sqrt{81}}{2\left(-1\right)}
Add 49 to 32.
y=\frac{-7±9}{2\left(-1\right)}
Take the square root of 81.
y=\frac{-7±9}{-2}
Multiply 2 times -1.
y=\frac{2}{-2}
Now solve the equation y=\frac{-7±9}{-2} when ± is plus. Add -7 to 9.
y=-1
Divide 2 by -2.
y=-\frac{16}{-2}
Now solve the equation y=\frac{-7±9}{-2} when ± is minus. Subtract 9 from -7.
y=8
Divide -16 by -2.
-y^{2}+7y+8=-\left(y-\left(-1\right)\right)\left(y-8\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and 8 for x_{2}.
-y^{2}+7y+8=-\left(y+1\right)\left(y-8\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.