Factor
16\left(n-\frac{-\sqrt{7}-3}{2}\right)\left(n-\frac{\sqrt{7}-3}{2}\right)
Evaluate
16n^{2}+48n+8
Share
Copied to clipboard
16n^{2}+48n+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-48±\sqrt{48^{2}-4\times 16\times 8}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-48±\sqrt{2304-4\times 16\times 8}}{2\times 16}
Square 48.
n=\frac{-48±\sqrt{2304-64\times 8}}{2\times 16}
Multiply -4 times 16.
n=\frac{-48±\sqrt{2304-512}}{2\times 16}
Multiply -64 times 8.
n=\frac{-48±\sqrt{1792}}{2\times 16}
Add 2304 to -512.
n=\frac{-48±16\sqrt{7}}{2\times 16}
Take the square root of 1792.
n=\frac{-48±16\sqrt{7}}{32}
Multiply 2 times 16.
n=\frac{16\sqrt{7}-48}{32}
Now solve the equation n=\frac{-48±16\sqrt{7}}{32} when ± is plus. Add -48 to 16\sqrt{7}.
n=\frac{\sqrt{7}-3}{2}
Divide -48+16\sqrt{7} by 32.
n=\frac{-16\sqrt{7}-48}{32}
Now solve the equation n=\frac{-48±16\sqrt{7}}{32} when ± is minus. Subtract 16\sqrt{7} from -48.
n=\frac{-\sqrt{7}-3}{2}
Divide -48-16\sqrt{7} by 32.
16n^{2}+48n+8=16\left(n-\frac{\sqrt{7}-3}{2}\right)\left(n-\frac{-\sqrt{7}-3}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-3+\sqrt{7}}{2} for x_{1} and \frac{-3-\sqrt{7}}{2} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}