Solve for g
g = \frac{\sqrt{249} + 3}{2} \approx 9.389866919
g=\frac{3-\sqrt{249}}{2}\approx -6.389866919
Share
Copied to clipboard
3g^{2}-9g+8=188
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3g^{2}-9g+8-188=188-188
Subtract 188 from both sides of the equation.
3g^{2}-9g+8-188=0
Subtracting 188 from itself leaves 0.
3g^{2}-9g-180=0
Subtract 188 from 8.
g=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 3\left(-180\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -9 for b, and -180 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
g=\frac{-\left(-9\right)±\sqrt{81-4\times 3\left(-180\right)}}{2\times 3}
Square -9.
g=\frac{-\left(-9\right)±\sqrt{81-12\left(-180\right)}}{2\times 3}
Multiply -4 times 3.
g=\frac{-\left(-9\right)±\sqrt{81+2160}}{2\times 3}
Multiply -12 times -180.
g=\frac{-\left(-9\right)±\sqrt{2241}}{2\times 3}
Add 81 to 2160.
g=\frac{-\left(-9\right)±3\sqrt{249}}{2\times 3}
Take the square root of 2241.
g=\frac{9±3\sqrt{249}}{2\times 3}
The opposite of -9 is 9.
g=\frac{9±3\sqrt{249}}{6}
Multiply 2 times 3.
g=\frac{3\sqrt{249}+9}{6}
Now solve the equation g=\frac{9±3\sqrt{249}}{6} when ± is plus. Add 9 to 3\sqrt{249}.
g=\frac{\sqrt{249}+3}{2}
Divide 9+3\sqrt{249} by 6.
g=\frac{9-3\sqrt{249}}{6}
Now solve the equation g=\frac{9±3\sqrt{249}}{6} when ± is minus. Subtract 3\sqrt{249} from 9.
g=\frac{3-\sqrt{249}}{2}
Divide 9-3\sqrt{249} by 6.
g=\frac{\sqrt{249}+3}{2} g=\frac{3-\sqrt{249}}{2}
The equation is now solved.
3g^{2}-9g+8=188
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3g^{2}-9g+8-8=188-8
Subtract 8 from both sides of the equation.
3g^{2}-9g=188-8
Subtracting 8 from itself leaves 0.
3g^{2}-9g=180
Subtract 8 from 188.
\frac{3g^{2}-9g}{3}=\frac{180}{3}
Divide both sides by 3.
g^{2}+\left(-\frac{9}{3}\right)g=\frac{180}{3}
Dividing by 3 undoes the multiplication by 3.
g^{2}-3g=\frac{180}{3}
Divide -9 by 3.
g^{2}-3g=60
Divide 180 by 3.
g^{2}-3g+\left(-\frac{3}{2}\right)^{2}=60+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
g^{2}-3g+\frac{9}{4}=60+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
g^{2}-3g+\frac{9}{4}=\frac{249}{4}
Add 60 to \frac{9}{4}.
\left(g-\frac{3}{2}\right)^{2}=\frac{249}{4}
Factor g^{2}-3g+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(g-\frac{3}{2}\right)^{2}}=\sqrt{\frac{249}{4}}
Take the square root of both sides of the equation.
g-\frac{3}{2}=\frac{\sqrt{249}}{2} g-\frac{3}{2}=-\frac{\sqrt{249}}{2}
Simplify.
g=\frac{\sqrt{249}+3}{2} g=\frac{3-\sqrt{249}}{2}
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}