Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}+2x+8
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=-3\times 8=-24
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx+8. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=6 b=-4
The solution is the pair that gives sum 2.
\left(-3x^{2}+6x\right)+\left(-4x+8\right)
Rewrite -3x^{2}+2x+8 as \left(-3x^{2}+6x\right)+\left(-4x+8\right).
3x\left(-x+2\right)+4\left(-x+2\right)
Factor out 3x in the first and 4 in the second group.
\left(-x+2\right)\left(3x+4\right)
Factor out common term -x+2 by using distributive property.
-3x^{2}+2x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 8}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 8}}{2\left(-3\right)}
Square 2.
x=\frac{-2±\sqrt{4+12\times 8}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-2±\sqrt{4+96}}{2\left(-3\right)}
Multiply 12 times 8.
x=\frac{-2±\sqrt{100}}{2\left(-3\right)}
Add 4 to 96.
x=\frac{-2±10}{2\left(-3\right)}
Take the square root of 100.
x=\frac{-2±10}{-6}
Multiply 2 times -3.
x=\frac{8}{-6}
Now solve the equation x=\frac{-2±10}{-6} when ± is plus. Add -2 to 10.
x=-\frac{4}{3}
Reduce the fraction \frac{8}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{12}{-6}
Now solve the equation x=\frac{-2±10}{-6} when ± is minus. Subtract 10 from -2.
x=2
Divide -12 by -6.
-3x^{2}+2x+8=-3\left(x-\left(-\frac{4}{3}\right)\right)\left(x-2\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{3} for x_{1} and 2 for x_{2}.
-3x^{2}+2x+8=-3\left(x+\frac{4}{3}\right)\left(x-2\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-3x^{2}+2x+8=-3\times \frac{-3x-4}{-3}\left(x-2\right)
Add \frac{4}{3} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
-3x^{2}+2x+8=\left(-3x-4\right)\left(x-2\right)
Cancel out 3, the greatest common factor in -3 and 3.