Solve for x
x=\left(-\frac{3}{13}+\frac{2}{13}i\right)y+\left(\frac{4}{13}+\frac{32}{13}i\right)
Solve for y
y=\left(-3-2i\right)x+\left(-4+8i\right)
Share
Copied to clipboard
8+3ix+iy=2x-4i
Use the distributive property to multiply 3x+y by i.
8+3ix+iy-2x=-4i
Subtract 2x from both sides.
8+\left(-2+3i\right)x+iy=-4i
Combine 3ix and -2x to get \left(-2+3i\right)x.
\left(-2+3i\right)x+iy=-4i-8
Subtract 8 from both sides.
\left(-2+3i\right)x=-4i-8-iy
Subtract iy from both sides.
\left(-2+3i\right)x=-iy-8-4i
Reorder the terms.
\left(-2+3i\right)x=-8-4i-iy
The equation is in standard form.
\frac{\left(-2+3i\right)x}{-2+3i}=\frac{-8-4i-iy}{-2+3i}
Divide both sides by -2+3i.
x=\frac{-8-4i-iy}{-2+3i}
Dividing by -2+3i undoes the multiplication by -2+3i.
x=\left(-\frac{3}{13}+\frac{2}{13}i\right)y+\left(\frac{4}{13}+\frac{32}{13}i\right)
Divide -iy+\left(-8-4i\right) by -2+3i.
8+3ix+iy=2x-4i
Use the distributive property to multiply 3x+y by i.
3ix+iy=2x-4i-8
Subtract 8 from both sides.
iy=2x-4i-8-3ix
Subtract 3ix from both sides.
iy=\left(2-3i\right)x-4i-8
Combine 2x and -3ix to get \left(2-3i\right)x.
iy=\left(2-3i\right)x+\left(-8-4i\right)
The equation is in standard form.
\frac{iy}{i}=\frac{\left(2-3i\right)x+\left(-8-4i\right)}{i}
Divide both sides by i.
y=\frac{\left(2-3i\right)x+\left(-8-4i\right)}{i}
Dividing by i undoes the multiplication by i.
y=\left(-3-2i\right)x+\left(-4+8i\right)
Divide \left(2-3i\right)x+\left(-8-4i\right) by i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}