Solve for a (complex solution)
a\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Share
Copied to clipboard
8+1+6a+9a^{2}=8a^{2}+\left(a+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+3a\right)^{2}.
9+6a+9a^{2}=8a^{2}+\left(a+3\right)^{2}
Add 8 and 1 to get 9.
9+6a+9a^{2}=8a^{2}+a^{2}+6a+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+3\right)^{2}.
9+6a+9a^{2}=9a^{2}+6a+9
Combine 8a^{2} and a^{2} to get 9a^{2}.
9+6a+9a^{2}-9a^{2}=6a+9
Subtract 9a^{2} from both sides.
9+6a=6a+9
Combine 9a^{2} and -9a^{2} to get 0.
9+6a-6a=9
Subtract 6a from both sides.
9=9
Combine 6a and -6a to get 0.
\text{true}
Compare 9 and 9.
a\in \mathrm{C}
This is true for any a.
8+1+6a+9a^{2}=8a^{2}+\left(a+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+3a\right)^{2}.
9+6a+9a^{2}=8a^{2}+\left(a+3\right)^{2}
Add 8 and 1 to get 9.
9+6a+9a^{2}=8a^{2}+a^{2}+6a+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(a+3\right)^{2}.
9+6a+9a^{2}=9a^{2}+6a+9
Combine 8a^{2} and a^{2} to get 9a^{2}.
9+6a+9a^{2}-9a^{2}=6a+9
Subtract 9a^{2} from both sides.
9+6a=6a+9
Combine 9a^{2} and -9a^{2} to get 0.
9+6a-6a=9
Subtract 6a from both sides.
9=9
Combine 6a and -6a to get 0.
\text{true}
Compare 9 and 9.
a\in \mathrm{R}
This is true for any a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}