Solve for x
x = \frac{578}{49} = 11\frac{39}{49} \approx 11.795918367
Graph
Share
Copied to clipboard
\left(8+\sqrt{2x}-3\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Square both sides of the equation.
\left(5+\sqrt{2x}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Subtract 3 from 8 to get 5.
25+10\sqrt{2x}+\left(\sqrt{2x}\right)^{2}=\left(3\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{2x}\right)^{2}.
25+10\sqrt{2x}+2x=\left(3\sqrt{x-1}\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
25+10\sqrt{2x}+2x=3^{2}\left(\sqrt{x-1}\right)^{2}
Expand \left(3\sqrt{x-1}\right)^{2}.
25+10\sqrt{2x}+2x=9\left(\sqrt{x-1}\right)^{2}
Calculate 3 to the power of 2 and get 9.
25+10\sqrt{2x}+2x=9\left(x-1\right)
Calculate \sqrt{x-1} to the power of 2 and get x-1.
25+10\sqrt{2x}+2x=9x-9
Use the distributive property to multiply 9 by x-1.
10\sqrt{2x}=9x-9-\left(25+2x\right)
Subtract 25+2x from both sides of the equation.
10\sqrt{2x}=9x-9-25-2x
To find the opposite of 25+2x, find the opposite of each term.
10\sqrt{2x}=9x-34-2x
Subtract 25 from -9 to get -34.
10\sqrt{2x}=7x-34
Combine 9x and -2x to get 7x.
\left(10\sqrt{2x}\right)^{2}=\left(7x-34\right)^{2}
Square both sides of the equation.
10^{2}\left(\sqrt{2x}\right)^{2}=\left(7x-34\right)^{2}
Expand \left(10\sqrt{2x}\right)^{2}.
100\left(\sqrt{2x}\right)^{2}=\left(7x-34\right)^{2}
Calculate 10 to the power of 2 and get 100.
100\times 2x=\left(7x-34\right)^{2}
Calculate \sqrt{2x} to the power of 2 and get 2x.
200x=\left(7x-34\right)^{2}
Multiply 100 and 2 to get 200.
200x=49x^{2}-476x+1156
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7x-34\right)^{2}.
200x-49x^{2}=-476x+1156
Subtract 49x^{2} from both sides.
200x-49x^{2}+476x=1156
Add 476x to both sides.
676x-49x^{2}=1156
Combine 200x and 476x to get 676x.
676x-49x^{2}-1156=0
Subtract 1156 from both sides.
-49x^{2}+676x-1156=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-676±\sqrt{676^{2}-4\left(-49\right)\left(-1156\right)}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 676 for b, and -1156 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-676±\sqrt{456976-4\left(-49\right)\left(-1156\right)}}{2\left(-49\right)}
Square 676.
x=\frac{-676±\sqrt{456976+196\left(-1156\right)}}{2\left(-49\right)}
Multiply -4 times -49.
x=\frac{-676±\sqrt{456976-226576}}{2\left(-49\right)}
Multiply 196 times -1156.
x=\frac{-676±\sqrt{230400}}{2\left(-49\right)}
Add 456976 to -226576.
x=\frac{-676±480}{2\left(-49\right)}
Take the square root of 230400.
x=\frac{-676±480}{-98}
Multiply 2 times -49.
x=-\frac{196}{-98}
Now solve the equation x=\frac{-676±480}{-98} when ± is plus. Add -676 to 480.
x=2
Divide -196 by -98.
x=-\frac{1156}{-98}
Now solve the equation x=\frac{-676±480}{-98} when ± is minus. Subtract 480 from -676.
x=\frac{578}{49}
Reduce the fraction \frac{-1156}{-98} to lowest terms by extracting and canceling out 2.
x=2 x=\frac{578}{49}
The equation is now solved.
8+\sqrt{2\times 2}-3=3\sqrt{2-1}
Substitute 2 for x in the equation 8+\sqrt{2x}-3=3\sqrt{x-1}.
7=3
Simplify. The value x=2 does not satisfy the equation.
8+\sqrt{2\times \frac{578}{49}}-3=3\sqrt{\frac{578}{49}-1}
Substitute \frac{578}{49} for x in the equation 8+\sqrt{2x}-3=3\sqrt{x-1}.
\frac{69}{7}=\frac{69}{7}
Simplify. The value x=\frac{578}{49} satisfies the equation.
x=\frac{578}{49}
Equation \sqrt{2x}+5=3\sqrt{x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}